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Deep Learning in Agriculture: Detection and Analysis

of Sugar Beets with YOLOvS8
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ABSTRACT In this study, the performance of the YOLOv8 model in detecting sugar beets was evaluated using
images obtained from a drone over a sugar beet field. High-resolution drone images were divided into small

KEYWORDS
Sugar beet detec-

segments, labeled, and the model was trained using data augmentation techniques. The results obtained  tion

during the training and testing phases demonstrated that the model successfully detected sugar beets with
high accuracy, precision, recall, and F1 score values. The analysis of label correlograms and result graphs
confirmed the model’s labeling accuracy and detection capability. These findings indicate that the YOLOv8
model can be an effective tool in agricultural production monitoring and plant health assessment applications.
In the future, the model’s performance will be more comprehensively evaluated using datasets obtained from

different geographical regions and various agricultural products.

Drone images
Deep learning
YOLOv8
Agricultural moni-
toring

INTRODUCTION

Sugar beet is a significant crop worldwide and plays a crucial
role in global food security and economy (Yalginkaya et al. 2006).
With its high sugar content, sugar beet is a vital component in
sugar production, which is a fundamental food item in many
households worldwide (Semerci 2016). The crop is cultivated in
various parts of the world, including major producers like the
United States, France, and Germany. Sugar beet cultivation is a
complex process that requires careful planning, precise irrigation,
and timely harvesting to ensure optimal yields (Yal¢inkaya et al.
2006).

Sugar beet is also a significant crop in Turkey, especially in the
eastern regions where the climate is more favorable for agriculture
(Tursun 2016). The country has a long history of sugar beet produc-
tion dating back to the early 20th century. Today, Turkey is one of
the largest sugar beet producers globally, with a significant portion
of its production coming from eastern provinces (Semerci 2016).
The country’s sugar beet industry is supported by a network of
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sugar factories, processing plants, and research institutions work-
ing together to increase yields, reduce costs, and improve overall
efficiency.

Drone technologies offer revolutionary innovations in the agri-
cultural sector and are used in areas such as monitoring plant
health, managing irrigation, and increasing crop Drone technolo-
gies offer revolutionary innovations in the agricultural sector and
are used in areas such as monitoring plant health, managing ir-
rigation, and increasing crop productivity. For instance, aerial
photography and multispectral imaging with drones enable farm-
ers to analyze field conditions more quickly and accurately (Zhang
and Kovacs 2012). These technologies offer time and cost savings
in critical agricultural processes such as disease and pest detection,
and unmanned aerial vehicles provide a much more effective solu-
tion for surveying large agricultural areas in a short time compared
to traditional methods (Tsouros et al. 2019). The development of
these technologies paves the way for more sustainable and effi-
cient practices in agricultural activities. With the increasing use of
unmanned aerial vehicles in agricultural production, studies on
the integration and optimization of these technologies are gaining
momentum (Bendig et al. 2013).

Artificial intelligence and image processing methods are fun-
damentally transforming data analysis and decision-making pro-
cesses in the agricultural sector. Specifically, object detection and
classification algorithms provide high accuracy in the analysis of
agricultural images (Kamilaris and Prenafeta-Bold 2018). Deep
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learning models such as YOLO (You Only Look Once) offer ef-
fective solutions for the automatic identification and monitoring
of agricultural products (Redmon et al. 2016). These algorithms
can be trained on large datasets and provide valuable insights
into plant health and productivity (Chlingaryan et al. 2018). Ad-
ditionally, Al-supported image processing techniques are used
in the autonomous management of agricultural machinery and
precision farming applications. The adoption of Al and image pro-
cessing technologies in agriculture enhances the optimization and
sustainability of production processes (Chlingaryan ef al. 2018).

The journey from YOLO-v1 to YOLO-v8 showcases the continu-
ous improvement and adaptability of these models. (Hussain 2023)
discusses the progression and complementary nature of YOLO
models, emphasizing their integration into digital manufactur-
ing and defect detection. (Talaat and ZainEldin 2023) propose an
enhanced fire detection approach for smart cities utilizing YOLO-
v8, highlighting its efficacy in real-time scenarios. (Terven et al.
2023) provide a comprehensive review of YOLO architectures, not-
ing the advancements up to YOLO-v8 and the introduction of
YOLO-NAS, which further enhance performance and accuracy in
computer vision tasks. Additionally, (Kim et al. 2023) demonstrate
the application of YOLO-v8 in high-speed drone detection, un-
derlining its capability in rapid and precise object identification.
These studies collectively illustrate the versatility and robust per-
formance of YOLO-v8 across diverse applications, marking it as a
pivotal development in the field of computer vision.

Modern approaches in sugar beet production involve the inte-
gration of new technologies to increase efficiency and ensure envi-
ronmental sustainability. Advanced agricultural machinery and
sensor systems enable more efficient management of sugar beet
fields (Hoffmann and Kenter 2018). These systems continuously
monitor soil moisture, plant health, and growth rates, providing
farmers with real-time data. This allows for the optimization of
precision farming practices, fertilization, and irrigation processes,
thereby minimizing environmental impacts (Weiss et al. 2020).Mod-
ern biotechnology methods also play a significant role in the devel-
opment of disease-resistant and high-yielding sugar beet varieties.
These innovative approaches contribute to increased sustainability
and economic gains in sugar beet production (Kumar et al. 2016).

The use of drone and artificial intelligence technologies in
agriculture has the potential to further improve agricultural pro-
duction processes in the future (Kaya and Goraj 2020). Al algo-
rithms, integrated with big data analytics, can provide decision
support systems at every stage of agricultural production processes
(Wolfert et al. 2017). These technologies will enhance the agricul-
tural sector’s ability to adapt to global challenges such as climate
change and population growth (Rose et al. 2016). Additionally,
data-sharing platforms and smart farming networks will facilitate
farmers’ access to information, contributing to the creation of a
collective knowledge base. The widespread adoption of drone
and Al technologies in agriculture will enable the development of
more sustainable, efficient, and resilient agricultural systems in the
future (Eastwood et al. 2019).

MATERIALS AND METHODS

Dataset and Resources

The dataset used in this study consists of high-resolution drone
images of sugar beet fields obtained from the internet. The images
contain sugar beet plants in the green leafy growth stage. To ensure
the accuracy and diversity of the images, the dataset, comprising
271 images, was divided into small segments and augmented using
various data augmentation techniques. Each image segment was
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cropped to include sugar beet plants prominently. Subsequently,
the images were manually labeled. The labeling process was car-
ried out carefully and meticulously to provide accurate data and
enhance the training performance of the model.

The artificial intelligence model was developed following the
“Machine Learning Lifecycle” depicted below and in Figure 1.

1. Data
| Collection |
— " v ‘.\ J—
ya —~— IS ~
7. Presentation| 2. Daﬁll

\ / | Preparation |

{ & Model | [ 3Daa
Testing | | Cleaning |

y .
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\ Training | L Analysis

Figure 1 Machine Learning Lifecycle

Artifical Intelligence

With the advancement of technology today, artificial intelligence, a
subject that continues to evolve, made its debut during a meeting
in 1956, introduced by John McCarthy (Yilmaz et al. 2020). Artifi-
cial learning entails the ability of a computer or a machine under
computer control to make decisions using mechanisms resembling
those of living beings that can learn (Ozel, M. A. and Baysal, S.
S. and Sahin, M. 2021). In short, Artificial learning (AI) aims to
replace human intelligence with machine intelligence (Munakata
1998). Artificial learning systems are those that interpret complex
data through various methods to make it more understandable and
improve themselves based on the experiences they gain (Aksoy
et al. 2021).

&
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. =
=

(a)

Figure 2 (a) A neuron model preserving the natural neuron image.
(b) Another representation of the model (Munakata 1998)

A biological neuron is the fundamental building block of the
nervous system. Its main function is to facilitate the transmission
of information. It receives, transmits, and responds to stimuli. The
artificial neuron shares similarities with it, consisting of structures
such as axon, synapse, dendrite, myelin sheath, and nucleus. After
defining the neural network architecture, the network enters the
training phase. In this stage, the network learns by iteratively ad-
justing the weights of its connections based on provided examples
(Munakata 1998).

Computer Science



Artifical Neural Networks

Artificial neural networks gained recognition through a study con-
ducted by Warren McCulloch and Walter Pitts in 1943. They belong
to the subset of artificial intelligence. The mathematical modeling
of the neural structure of the human brain, for learning from expe-
riences and remembering methods, is referred to as artificial neural
networks. The aim is to model the neuron network of the brain to
transfer the learning and decision-making process of the human
brain to the computer environment. A neural network (NN) is an
abstract computer example of the human brain (Munakata 1998).

Activation
Function

Perceptron

b Wi Wy W3 W, - Weights of Connections

X, X, X, X, - Input | b - Bias

Figure 3 Mathematical model of a neuron (Tan et al. 2021)

Artificial neural networks are composed of artificial neurons.
They have five basic components: inputs, weights, summation
function, activation function, and outputs. Single-layer neural
networks consist of input and output layers. These layers are
generally used to solve linear problems. There can be one or more
neurons in the layers (Yilmaz et al. 2020).

Machine Learning

In 1950, Alan Turing anticipated the development of the concept
of machine learning and its future impact. Machine learning, a
method used in artificial intelligence studies, is considered a subset
of artificial intelligence. Deep learning is also a subset of machine
learning. The relationship between artificial intelligence, machine
learning, and deep learning is shown in Figure 4 (Tan et al. 2021).

The manual processing and analysis of very large datasets are
not feasible. To address these problems, Machine Learning (ML)
methods have been developed. Machine learning is the general
term for computer algorithms that model a problem based on the
data specific to that problem. The model created with the available
dataset and the algorithm used are designed to perform optimally
(Atalay and Celik 2017).

Deep Learning

Following AlexNet'’s victory in the ImageNet competition in 2012,
deep learning models began to be used in subsequent competitions.
Deep learning is a subclass of machine learning with one or more
hidden layers to gradually extract high-level features from raw
data (Kazang et al. 2021).

Deep learning can successfully analyze large datasets and can
be applied to any field where data is available (Tan et al. 2021). The
widespread success of deep learning is attributed to its method
of computing outputs. A significant advantage of deep learning
compared to traditional techniques is that it does not require an
explicit feature extraction stage (Bozkurt 2021).

Computer Science
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Figure 4 Artificial Intelligence Architecture (Arslan 2021)

Due to advancements in hardware, there has been an increased
focus on deep learning studies, which has in turn improved object
detection success rates. R-CNN, Faster R-CNN, Single Shot Detec-
tor (SSD), and YOLO are some of the deep learning-based object
detection methods.

Among these methods, the YOLO algorithm and the DarkNet
model offer high processing speed and accuracy. Experiments
were conducted for four different versions of the algorithm, and
the results were compared. The best results in terms of detection
accuracy and speed were achieved with Version-4 algorithm. The
success of deep learning methods has been proven in ImageNet
classification competitions (Segkin 2021).

Training and Optimization of YOLOv8 Model

YOLOVS is a model developed for real-time object detection and
offers significant improvements over its previous versions. One
of the biggest advantages of YOLOVS is its ability to provide high
accuracy at high speed (Redmon ef al. 2016). The model has been
optimized for sugar beet detection and trained on the dataset
prepared for this study. YOLOVS has the ability to detect objects in
a single network without incorporating complex components like
region proposal networks (Bochkovskiy et al. 2020).

Various data augmentation techniques were used during the
model training process. Images were processed with techniques
such as rotation, scaling, brightness, and contrast adjustments.
These techniques were used to improve the model’s generalization
ability. The hyperparameters of YOLOv8 were optimized during
the training process; these hyperparameters include factors such
as learning rate, batch size, and number of epochs. During train-
ing, the performance of the model on training and validation sets
was monitored, and necessary adjustments were made. The loss
function was carefully selected to improve the model’s accuracy.
The loss function of YOLOvVS focuses on minimizing classification
and localization errors.

Additionally, the architecture of the model has been optimized
for both speed and accuracy. YOLOvVS can provide fast results even
on large datasets with efficient memory usage and computational
requirements (Sokolova and Lapalme 2009). The output layers of
the model provide class predictions and bounding box coordinates
for each object. In this study, the performance of YOLOv8 was
evaluated using metrics such as accuracy, error rate, precision,
recall, and F1 score. The results showed that the model achieved
high accuracy and efficiency in sugar beet detection.



Evaluation Metrics

The performance of the model was evaluated using metrics such
as accuracy, loss, precision, recall, F1 score, and mean Average
Precision (mAP).

Accuracy Accuracy represents the ratio of correct predictions made
by the model to the total predictions. In a classification problem,
accuracy is calculated as the ratio of correctly classified examples
to the total examples.

TP (True Positives): Correctly predicted positive instances. TN
(True Negatives): Correctly predicted negative instances. FP (False
Positives): Incorrectly predicted positive instances. FN (False
Negatives): Incorrectly predicted negative instances.

TP+TN
TP+TN+FP+FN

Accuracy = (1)
Precision Precision is a metric that represents the ratio of correct
detections made by the model to the total detections. This metric
is particularly important to assess the impact of false positives.
A high precision value indicates that the majority of detections
made by the model are correct. It measures the accuracy of the
positive predictions made by the model and is calculated using the
following formula:

. TP

Precision = TP+ D (2)
Recall Recall, also known as sensitivity or true positive rate, mea-
sures the ratio of correct detections made by the model to the total
number of actual objects. This metric is particularly important to
assess the impact of missed positives (false negatives). A high re-
call value indicates that the model successfully detects all available
sugar beets. Recall measures how well the model detects all sugar
beets and is calculated using the following formula:

TP

Recall = m

3)
F1 Score F1 score represents the harmonic mean of precision and
recall, summarizing the overall performance of the model. This
metric balances precision and recall, providing a single value to
evaluate the model’s performance. It is calculated using the fol-
lowing formula:

Precision x Recall
Precision + Recall
The F1 score is an important metric, especially in imbalanced
datasets, because it considers both correct detections and missed
detections.

Mean Average Precision (mAP) mAP measures the average accu-
racy performance of the model across all classes. This metric is ob-
tained by averaging the Average Precision (AP) values calculated
for each class. mAP represents the overall detection performance
of the model and is calculated using the following formula:

1 N
mAP = N Y AP, 5)
i=1

Here, N represents the total number of classes, and AP repre-
sents the Average Precision value calculated for each class. mAP is
an important metric when evaluating the overall performance of
the model because it considers the performance across all classes.
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RESULTS

This study evaluated the performance of the YOLOv8 model for
sugar beet detection, and the results were promising. Various data
augmentation techniques were employed during the model train-
ing to increase the diversity of the dataset and enhance the model’s
generalization ability. After applying these augmentation tech-
niques, the dataset expanded to 1355 images. The F1 score graph
obtained after the training process demonstrates that the model
exhibits high performance in terms of accuracy and precision. In
the F1 score graph, it is evident that the accuracy improves and
errors decrease as the training progresses.

F1-Confidence Curve
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] 0.2 &4 0.6 0.8 Lo
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Figure 5 F1 Score Graph

IN-TEXT CITATIONS

A labels correlogram image was used to analyze the correlation
between labels and the model’s labeling accuracy. This analysis
confirms that the model consistently produces accurate labeling.
The correlogram shows the relationship between each label and
other labels, as well as how accurately the model detects each label.
This demonstrates how well the model distinguishes between
similar-looking objects and how precise it is.

Additionally, as is seen from in the result graph the sugar beet
plants detected by the model are accurately identified, and the
bounding boxes are correctly placed.

The images used in the testing process were selected to evaluate
how the model would perform in real-world applications. The
analysis of the test images shows that the model can successfully
detect sugar beet plants. The number and locations of sugar beet
plants detected by the model were verified by comparing them
with ground truth values. These test images demonstrate the
practical application potential of the model in the field.

As a result, it has been observed that the YOLOv8 model pro-
vides 96.3% accuracy and efficiency in sugar beet detection. The
model has yielded successful results in both the training and test-
ing phases. The findings of this study may contribute to productiv-
ity and plant health monitoring efforts in sugar beet fields. In the
future, it is planned to test the model on larger and more diverse
datasets and adapt it to different agricultural products.

Computer Science
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Figure 6 Training and Validation Result Graphs
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DISCUSSION

This study aimed to evaluate the effectiveness of the YOLOvVS
model in detecting sugar beets using drone imagery. The results
obtained demonstrate that the model can accurately and precisely
detect sugar beets. The data augmentation techniques employed
during the model’s training process have increased the diversity
of the dataset and enhanced the model’s generalization capability.
This has enabled the model to perform successfully not only in spe-
cific environments but also in different environmental conditions.

Computer Science

Figure 8 Test Image

PERFORMANCE METRICS AND EVALUATION OF RESULTS

The evaluation metrics of the model include various criteria such
as accuracy, precision, recall, F1 score, and mAP. The result of the
performance metrics can be seen in Table 1. Precision measures
the ratio of correct detections made by the model, while recall
evaluates how well the model can detect all true sugar beet plants
[30]. The obtained high precision and recall values indicate that
the model minimizes both false positives and false negatives. The
F1 score summarizes the overall performance of the model by
providing a balanced combination of these two metrics.



Table 1 Performance Metrics

Accuracy F1

Recall mAP

96.3% 96%

94.9% 97.4%

The obtained F1 score graph illustrates how the accuracy and
error rates of the model improved over time during the training
process. It's observed that the model’s accuracy increased and
errors decreased as the training progressed. This indicates the
model’s learning capacity and its ability to adapt to the dataset.
Additionally, the labels correlogram image allows us to analyze
the labeling accuracy and correlation between labels. This analysis
confirms that the model produces consistent and accurate labeling.

REAL-WORLD APPLICATIONS OF THE MODEL

The images used during the testing phase were selected to simulate
real-world conditions. The analysis of these test images demon-
strates that the model can successfully detect sugar beets. This
finding indicates that the model can be practically used in agri-
cultural applications. Particularly, such a model is believed to
have significant potential for monitoring field productivity and
assessing plant health.

LIMITATIONS AND FUTURE WORK

This study has several limitations. Firstly, the dataset used consists
of images obtained from a single field. Evaluating the model’s
performance with datasets obtained from different geographical
regions and varying climate conditions is essential for generaliz-
ability. Additionally, exploring the applicability of the model to
other agricultural products could be an important research topic
for future studies.

In the future, the model is planned to be tested on larger and
more diverse datasets. Additionally, the aim is to further enhance
the model’s performance by exploring different deep learning
models and data augmentation techniques. Such studies could
provide more effective and efficient solutions for monitoring and
managing agricultural production.

CONCLUSION

This study has demonstrated that the YOLOv8 model provides
high accuracy and efficiency in sugar beet detection. The model has
shown successful results in both the training and testing phases.
The findings obtained can contribute significantly to productivity
and plant health monitoring in agricultural production. Such deep
learning models offer significant potential for digital transforma-
tion and smart farming applications in the agricultural sector.

Availability of data and material
Not applicable.

Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

Ethical standard

The authors have no relevant financial or non-financial interests to
disclose.

6 | Ozkurt et al.

LITERATURE CITED

Aksoy, B., K. Korucu, Caliskan, Osmanbey, and H. D. Halis, 2021
Insansiz hava araci ile goriintii Isleme ve yapay zeka teknikleri
kullanilarak yangin tespiti: Ornek bir uygulama. Diizce Univer-
sitesi Bilim ve Teknoloji Dergisi 9: 112-122.

Arslan, E., 2021 Evrigimli Sinir A§1 Ozelliklerine Dayanan Korelasyon
Filtreleme ve Veri Iliskilendirme ile Coklu Nesne Takibi. Master’s
thesis, Bursa Uludag University (Turkey).

Atalay, M. and E. Celik, 2017 Biiytiik veri analizinde yapay zeka
ve makine Ogrenmesi uygulamalari - artificial intelligence and
machine learning applications in big data analysis. Mehmet Akif
Ersoy Universitesi Sosyal Bilimler Enstitiisii Dergisi pp. 155-172.

Bendig, J., A. Bolten, and G. Bareth, 2013 Uav-based imaging for
multi-temporal, very high resolution crop surface models to
monitor crop growth variability. Photogrammetrie, Fernerkun-
dung, Geoinformation 2013: 551-562.

Bochkovskiy, A., C.-Y. Wang, and H.-Y. M. Liao, 2020 Yolov4:
Optimal speed and accuracy of object detection Available:
http:/ /arxiv.org/abs/2004.10934.

Bozkurt, F., 2021 Derin Ogrenme tekniklerini kullanarak akciger
x-ray goriintiilerinden covid-19 tespiti. European Journal of Sci-
ence and Technology pp. 149-156.

Chlingaryan, A., S. Sukkarieh, and B. Whelan, 2018 Machine learn-
ing approaches for crop yield prediction and nitrogen status
estimation in precision agriculture: A review. Computers and
Electronics in Agriculture 151: 61-69.

Eastwood, C., L. Klerkx, M. Ayre, and B. Dela Rue, 2019 Managing
socio-ethical challenges in the development of smart farming:
From a fragmented to a comprehensive approach for responsible
research and innovation. Journal of Agricultural and Environ-
mental Ethics 32: 741-768.

Hoffmann, C. M. and C. Kenter, 2018 Yield potential of sugar beet
—have we hit the ceiling? Frontiers in Plant Science 9: 1-6.

Hussain, M., 2023 Yolo-v1 to yolo-v8, the rise of yolo and its com-
plementary nature toward digital manufacturing and industrial
defect detection. Machines 11: 677.

Kamilaris, A. and F. X. Prenafeta-Boldu, 2018 Deep learning in
agriculture: A survey. Computers and Electronics in Agriculture
147: 70-90.

Kaya, S. and Z. Goraj, 2020 The use of drones in agricultural pro-
duction. International Journal of Innovative Approaches in Agri-
cultural Research 4: 166-176.

Kazang, M., T. Ensari, and M. Dagtekin, 2021 Videolarin derin
Ogrenme ile siuflandirilarak filtrelenmesi. European Journal of
Science and Technology pp. 338-342.

Kim, J. H., N. Kim, and C. S. Won, 2023 High-speed drone detec-
tion based on yolo-v8. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1-2, IEEE.

Kumar, V., M. Baweja, P. K. Singh, and P. Shukla, 2016 Recent
developments in systems biology and metabolic engineering of
plant-microbe interactions. Frontiers in Plant Science 7: 1-12.

Munakata, T., 1998 Fundamentals of the New Artificial Intelligence,
volume 2. Springer, New York.

Computer Science



Redmon, ., S. Divvala, R. Girshick, and A. Farhadi, 2016 You only
look once: Unified, real-time object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp- 779-788.

Rose, D. C. et al., 2016 Decision support tools for agriculture: To-
wards effective design and delivery. Agricultural Systems 149:
165-174.

Semerci, A., 2016 Tarimsal verimlilik gostergeleriyle avrupa birligi-
tiirkiye tarimi. Journal of Agricultural Faculty of Gaziosmanpasa
University 33: 203-203.

Seckin, M. E., 2021 Derin Ogrenme Kullanilarak Trafik Kosullarina
Uygun Otonom Arag Uygulamasi. Master’s thesis, Bursa Uludag
University (Turkey).

Sokolova, M. and G. Lapalme, 2009 A systematic analysis of perfor-
mance measures for classification tasks. Information Processing
and Management 45: 427-437.

Talaat, F. M. and H. ZainEldin, 2023 An improved fire detection
approach based on yolo-v8 for smart cities. Neural Computing
and Applications 35: 20939-20954.

Tan, F. G., A. S. Yiiksel, E. Aydemir, and M. Ersoy, 2021 Derin
Ogrenme teknikleri ile nesne tespiti ve takibi Uzerine bir In-
celeme. European Journal of Science and Technology pp. 159-
171.

Terven, J., D. M. Cérdova-Esparza, and J. A. Romero-Gonzélez,
2023 A comprehensive review of yolo architectures in computer
vision: From yolov1 to yolov8 and yolo-nas. Machine Learning
and Knowledge Extraction 5: 1680-1716.

Tsouros, D. C., S. Bibi, and P. G. Sarigiannidis, 2019 A review on
uav-based applications for precision agriculture. Information 10.

Tursun, N., 2016 Kahramanmaras ili ve Ilgelerinde Sekerpancari
ekim alanlarinda sorun olan yabanci otlarin belirlenmesi June.

Weiss, M., E Jacob, and G. Duveiller, 2020 Remote sensing for
agricultural applications: A meta-review. Remote Sensing of
Environment 236: 0-39.

Wolfert, S., L. Ge, C. Verdouw, and M. J. Bogaardt, 2017 Big data in
smart farming — a review. Agricultural Systems 153: 69-80.

Yal¢inkaya, N., M. H. Yal¢inkaya, and C. Cilbant, 2006 Avrupa
birligi'ne yonelik diizenlemeler Cercevesinde tiirk tarim poli-
tikalar1 ve sektoriin gelecegi Uzerine etkisi. Yonetim ve Ekonomi
13: 98-118, Ticaret Borsast Genel Sekreteri, MANSA Dr. Coskun
CILBANT.

Yilmaz, O., H. Aydin, and A. Cetinkaya, 2020 Faster r-cnn Uzerinde
gelistirilen model ile object detection api Uzerinde dogruluk
tahmini ve analizi. European Journal of Science and Technology
pp- 783-795.

Zhang, C. and J. M. Kovacs, 2012 The application of small un-
manned aerial systems for precision agriculture: A review. Pre-
cision Agriculture 13: 693-712.

Ozel, M. A. and Baysal, S. S. and Sahin, M., 2021 Derin
Ogrenme algoritmasi (yolo) ile dinamik test siiresince siispan-
siyon parcalarinda Catlak tespiti. European Journal of Science
and Technology pp. 1-5.

How to cite this article: Ozkurt, C., and Sungu, F. Deep Learning in
Agriculture: Detection and Analysis of Sugar Beets with YOLOVS.
ADBA Computer Science, 1(1), 1-7, 2024.

Licensing Policy: The published articles in ACS are licensed un-
der a Creative Commons Attribution-NonCommercial 4.0 Interna-

tional License.
BY NC

Computer Science


https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

AD3N
Computer Science

Cutting-Edge Scientific Solutions

e-ISSN: 3023-8544

RESEARCH ARTICLE

Vol.1 / No.1/2024 / pp.8-13
https://doi.org/10.69882/adba.cs.2024072

Evaluating the Effectiveness of Machine Learning
Models in Predicting Student Academic Achievement

Emre Deniz2*1

*Department of Computer Engineering, Hitit University, 19030, Corum, Turkiye.

ABSTRACT This study evaluates the effectiveness of various machine learning models in predicting student
academic achievement using a dataset of 1000 students. The data includes demographic, psychological,
social, and institutional factors. Models such as Linear Regression, Decision Tree Regressor, Random Forest
Regressor, K-Nearest Neighbors Regressor, Support Vector Regressor (SVR), Gradient Boosting Regressor
(GBR), XGBoost Regressor, and Neural Network (MLP) were employed. Results show that test preparation
courses significantly enhance student performance, with SVR and Linear Regression models demonstrating
the best predictive performance. The study highlights the importance of optimized educational strategies to

enhance academic outcomes.
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INTRODUCTION

Factors influencing student performance are multifaceted and
encompass a wide array of determinants. Demographic factors
such as gender, ethnicity, and parental education level have been
recognized as crucial influencers of academic success (Korantwi-
Barimah ef al. 2017; Cantekin 2020; Jones et al. 2012). Gender has
been highlighted as a factor impacting student academic perfor-
mance, with studies indicating variations in success levels between
male and female students (Degé et al. 2014). Similarly, ethnicity
plays a critical role in student academic success, with research
emphasizing the influence of ethnic identity and parents’ goals
on students’ academic achievements (Abbasi et al. 2019). Addi-
tionally, parental education level is linked to student performance,
where higher parental education levels are generally associated
with better academic outcomes (Tang 2011).

Psychological factors like achievement motivation, locus of
control, and academic self-concept are also key determinants of
academic success (Wenglinsky 1996; Bizuneh 2021). Motivation
levels and beliefs about one’s abilities significantly affect academic
performance, with high achievement motivation correlating with
greater academic success (Hosova and Duchovicova 2019). Locus
of control, representing individuals’ beliefs about control over their
lives, is associated with academic achievement, where internal
locus of control is linked to better performance (Iyengar ef al. 2022).
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Academic self-concept, reflecting students’ perceptions of their
academic abilities, plays a pivotal role in shaping their academic
outcomes (Corbiere ef al. 2006).

Social factors including parental involvement, peer influence,
and socioeconomic status have been shown to influence student
performance (Jaiswal and Choudhuri 2017; Marsh and Yeung 1997;
Erkman et al. 2010). Parental engagement in education is consis-
tently linked to increased academic success, with supportive family
environments contributing positively to students” achievements.
Peer influence can also impact student performance, with social
networks and friendships influencing academic outcomes . Addi-
tionally, socioeconomic status is a significant predictor of academic
success, with students from higher socioeconomic backgrounds
generally achieving better educational outcomes .

In conclusion, student performance is influenced by a com-
plex interplay of factors, encompassing individual characteristics
like motivation and self-concept, social influences such as parental
involvement and peer relationships, and broader institutional prac-
tices and educational environments. Understanding these multi-
faceted determinants is crucial for developing effective strategies
to support student success and enhance academic achievement.

The main research question of this study is: “What are the key
factors that influence student performance and how to determine
the relative effects of these factors on student academic achieve-
ment?”

This research question aims to analyze the effects of demo-
graphic, psychological, social and institutional factors on student
performance and determine the importance of these factors. In the
realm of machine learning, various regression models have been
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extensively studied and applied across different domains to pre-
dict outcomes and make informed decisions. Among the popular
regression models are Linear Regression, Decision Tree Regressor,
Random Forest Regressor, K-Nearest Neighbors Regressor, Sup-
port Vector Regressor (SVR), Gradient Boosting Regressor (GBR),
XGBoost Regressor (XGB), and Neural Network (Multi-Layer Per-
ceptron, MLP). These models have been employed in diverse fields
such as healthcare, environmental science, physics, and more to
address a wide range of prediction tasks (Hassanzadeh et al. 2022).

Linear Regression, a fundamental and widely used regression
model, forms the basis for many predictive analytics tasks. It es-
tablishes a linear relationship between the input variables and the
target variable, making it a simple yet effective tool for prediction.
Decision Tree Regressor operates by recursively partitioning the
data into subsets based on certain features, creating a tree-like
structure to make predictions. Random Forest Regressor, an en-
semble method built on decision trees, combines multiple trees
to improve prediction accuracy and reduce overfitting (Azar et al.
2022). K-Nearest Neighbors Regressor predicts the target variable
by considering the 'k’ nearest data points in the feature space.

Support Vector Regressor (SVR) utilizes support vectors to find
the optimal hyperplane that best separates the data points in a
high-dimensional space. Gradient Boosting Regressor sequentially
builds multiple weak learners to create a strong predictive model,
minimizing errors at each step. XGBoost Regressor, known for its
efficiency and performance, implements gradient-boosted decision
trees and is considered a state-of-the-art model for structured data,
often outperforming deep learning models in regression tasks
(Ferreira et al. 2024).

In the context of specific applications, these regression models
have been leveraged for various predictive tasks. For instance, in
the medical field, machine learning models like Random Forest,
Support Vector Machine (SVM), and XGBoost have been utilized
for survival prediction in diseases such as ovarian cancer. These
models play a crucial role in analyzing patient data and making
informed decisions regarding treatment and prognosis (Fei et al.
2019). Moreover, in environmental science, regression models like
Gradient Boosting Regressor, Linear Regression, K-Nearest Neigh-
bors Regressor, Random Forest Regressor, and XGBoost have been
employed to predict outcomes related to solar energy harvesting
and air pollution forecasting. These models aid in optimizing pro-
cesses, enhancing efficiency, and making data-driven decisions in
environmental research (Gongalves ef al. 2023). Furthermore, in
physics and material science, regression models such as XGBoost,
Random Forest, and Support Vector Regression have been utilized
for tasks like predicting reduction potentials for complexes and
conducting single-molecule conductance measurements.

In the domain of public health, machine learning models have
been instrumental in predicting outcomes related to pandemics like
COVID-19. Regression models such as Linear Regression, Support
Vector Machine Regressor, Random Forest Regressor, and XGBoost
Regressor have been employed to forecast disease outbreaks, ana-
lyze mortality rates, and guide public health interventions. These
models provide valuable insights for policymakers and healthcare
professionals to make informed decisions and mitigate the impact
of health crises (Belho and Rawat 2023). Overall, the diverse ap-
plications of regression models in various fields underscore their
significance in predictive analytics, decision-making, and knowl-
edge discovery. By leveraging the strengths of different regression
algorithms, researchers and practitioners can extract valuable in-
sights from data, optimize processes, and drive innovation across
a wide range of domains.
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MATERIALS AND METHODS

In this study, a data set containing performance data of 1000 stu-
dents was used (SPSScientist 2018). The variables included in the
data set are:

Gender: Female and male

Ethnicity: Group A, Group B, Group C, Group D, Group E

Parental Level of Education: Some high school, high school,
some college, associate’s degree, bachelor’s degree, master’s de-
gree

Lunch Type: Free/reduced and standard

Test Preparation Course: None and completed

Course Scores: Mathematics, reading and writing scores (be-
tween 0-100)

In the data preprocessing stage, categorical variables were con-
verted to numerical values and numerical variables were normal-
ized. This study was carried out using exploratory data analysis,
correlation analysis and various machine learning models (linear
regression, decision trees, random forest, K-Nearest Neighbors,
Support Vector Regressor, Gradient Boosting Regressor, XGBoost
Regressor, Multi-Layer Perceptron).

Data Preprocessing

First of all, missing and incorrect data in the data set were checked.
Categorical variables were converted to numerical values and nu-
merical variables were normalized. These operations are important
to make the data set suitable for machine learning models.

Figure 1 shows the detailed exploratory anaylsis of the data.
The distributions of the variables in the data set were examined
using histograms. Additionally, a correlation matrix was created
to understand the linear relationships between variables.

Gender: The number of male and female students in the data
set is almost equally distributed.

Ethnicity: Although there is no significant difference between
ethnicity groups, Group C and Group D seem to have the most
students.

Parental Level of Education: The majority of parents have re-
ceived education up to undergraduate level.

Lunch Type: The majority of students receive standard lunch.

Test Preparation Course: The majority of students have not
completed the test preparation course.

Mathematics, Reading and Writing Scores: These scores show
a wide distribution and the density is concentrated around the
average score.

The correlation matrix which showed in Figure 2 evaluates
linear relationships between variables. The findings obtained in
the correlation analysis are as follows:

Test Prep Course: Mathematics correlates positively with read-
ing and writing scores. This shows that students who completed
the test preparation course received higher scores.Math, Reading,
and Writing Scores: There are strong positive correlations between
these three scores. Students who perform well in one subject often
perform well in other courses.

Machine Learning Models

In this study, various machine learning models were used to pre-
dict student performance. Training and performance evaluation
of the models were performed by hyperparameter optimization
using GridSearchCV. The models and hyperparameter settings
used are:

Linear Regression Model: LinearRegression Hyperparameters:
No hyperparameter tuning is done.
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Figure 2 Correlation Matrix
Decision Tree Model: DecisionTreeRegressor Hyperparameters:

‘max-depth’: 10, ‘'min-samples-leaf”: 4, ‘min-samples-split”: 10
Random Forest Model: RandomForestRegressor Hyperparame-
ters: ‘max-depth”: 10, ‘min-samples-leaf”: 2, ‘min-samples-split’:
10, 'n-estimators’: 200

K-Nearest Neighbors (KNN) Model: KNeighborsRegressor Hy-
perparameters: ‘algorithm’: ‘brute’, 'n-neighbors”: 9, ‘'weights”:

"distance’

Support Vector Regressor (SVR) Model: SVR Hyperparameters:
’C’: 0.1, 'gamma’: "scale’, ‘kernel: ‘linear’

Gradient Boosting Regressor (GBR) Model: GradientBoostin-
gRegressor Hyperparameters: ‘learning-rate”: 0.1, ‘max-depth”: 3,
‘n-estimators’: 100, 'subsample”: 1.0

XGBoost Regressor (XGB) Model: XGBRegressor Hyperparam-
eters: ‘learning-rate”: 0.1, ‘max-depth”: 3, ‘n-estimators”: 100
Neural Network (MLP) Model: MLPRegressor Hyperparame-
ters: “activation”: “tanh’, “alpha’: 0.05, "hidden-layer-sizes”: (50, 100,
50), 'learning-rate’: “constant’, ‘solver”: adam’
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RESULTS

The performance of various machine learning models was evalu-
ated using Mean Squared Error (MSE) and R-squared (R?) metrics,
as shown in Table 1. The Support Vector Regressor (SVR) and Lin-
ear Regression models demonstrated the best performance, with
MSE values of 0.0028 and 0.0028 and R? values of 0.8866 and 0.8854
respectively. These models showed superior ability in predicting
student performance accurately.

The strong performance of these models suggests that linear
relationships among variables play a significant role in predicting
academic achievement. Additionally, models like Random Forest
and Gradient Boosting also showed high accuracy, indicating their
robustness in handling complex data interactions. The results
highlight the importance of optimizing test preparation strategies
and suggest that focusing on interrelated academic subjects can
lead to enhanced student performance.
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Table 1 Results of Machine Learning Models

Model Mean Squared Error (MSE) R-squared (R?2)
Linear Regression 0.0028 0.8854
Decision Tree 0.0046 0.8116
Random Forest 0.0036 0.8533
K-Nearest Neighbors 0.0054 0.7798
Support Vector Regressor 0.0028 0.8866
Gradient Boosting Regressor 0.0030 0.8755
XGBoost Regressor 0.0032 0.8685
Neural Network (MLP) 0.0036 0.8512

CONCLUSION

This study has demonstrated the effectiveness of various machine
learning models in predicting student academic achievement and
highlighted the significant impact of test preparation courses on
student performance. The findings indicate that demographic
factors such as gender and ethnicity are not direct determinants
of academic success, suggesting that educational policies should
focus on enhancing educational experiences and preparation.

Educational institutions are recommended to prioritize test
preparation courses and integrate data-driven approaches to iden-
tify and support students at risk of underperforming. Policies
should be designed to foster interconnected learning across sub-
jects to maximize student achievement. Future research should aim
to validate these findings using larger and more diverse datasets
and explore the long-term effects of different educational strate-
gies.
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ABSTRACT As information technology rapidly advances, servers, mobile, and desktop applications are easily
attacked due to their high value. Therefore, cyber attacks have raised great concerns in many areas. Anomaly
detection plays a significant role in the field of cyber attacks, and log records, which record detailed system
runtime information, have consequently become an important data analysis object. Traditional log anomaly
detection relies on programmers manually inspecting logs through keyword searches and regular expression
matching. While programmers can use intrusion detection systems to reduce their workload, log data is

massive, attack types are diverse, and the advancement of hacking skills makes traditional detection inefficient.

To improve traditional detection technology, many anomaly detection mechanisms, especially machine learning
methods, have been proposed in recent years. In this study, an anomaly detection system using two different
machine learning algorithms is proposed for large log data. Using Support Vector Machines (SVM) and
K-Nearest Neighbors (KNN) algorithms, experiments were conducted with the Hadoop Distributed File System
(HDFS) log dataset, and experimental results show that this system provides higher detection accuracy and

KEYWORDS
Anomaly detec-
tion

KNN

SVM

Machine learning
HDFS

can detect unknown anomaly data.

INTRODUCTION

In information technology infrastructures, many components and
assets are interconnected and continuously interacting. Therefore,
determining the cause of cyber attacks is challenging (A. Oliner
and Xu 2012). Log records are considered a primary data source
because they capture the runtime information of software (Sillito
and Kutomi 2020). Detecting anomalies in log records is difficult
due to several factors. The primary reasons include the rapidly
increasing volume of logs (H. Mi and Cai 2013), the simultaneous
generation of diverse log records (W. Xu and Jordan 2009), and
changes in the nature of log recording due to software updates
(Elbasani and Kim 2021).

In the existing literature, anomaly detection has been performed
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on various types of log records, including failure prediction and
management (Tan and Gu 2010), RAS logs (Z. Zheng and Beckman
2010), health logs (Elbasani and Kim 2021), event logs (T. Pitakrat
and Hoorn 2014), activity logs (H. Saadatfar and Deldari 2012),
transactional and operational log records (T. Jia and Xu 2017), and
more. Additionally, parsing log records has been achieved using
frequency pattern mining (Vaarandi 2003), clustering (H. Hamooni
and Mueen 2016), and natural language processing (NLP) tech-
niques (X. Duan and Yin 2021).

In this study, the machine learning algorithms K-Nearest Neigh-
bors (KNN) and Support Vector Machines (SVM) are used for fast
and effective anomaly detection. Analyses were conducted using
the Hadoop Distributed File System (HDFS) dataset, which has
been employed in numerous studies (M. Du and Srikumar 2017),
achieving high success rates.
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DATASET DESCRIPTION AND PREPARATION

In this study, experiments were conducted using the HDFS dataset.
This dataset has been labeled as normal and abnormal by Hadoop
experts. Table 1 shows the time span, number of log lines, and
the amount of labeled abnormal data in this dataset. The HDFS
log dataset was collected from over 200 heterogeneous sources of
Amazon and consists of 11,175,629 lines of log data. The HDFS log
data records operations such as partitioning, replicating, and delet-
ing within a specific block using block_id. This dataset comprises
575,061 log blocks with 16,838 labeled as abnormal by Hadoop
experts (M. Du and Srikumar 2017).

The analysis of log data involves using numerical and categor-
ical data as input, which requires the raw log data to be cleaned,
sorted, and normalized. Figure 1 shows the log parsing steps. Each
raw log entry consists of two parts: a timestamp and a complemen-
tary log part. The timestamp records the time of each log entry.
Since timestamps in different formats are regular expressions, they
can be easily extracted from raw log data during the log parsing
stage. The log identifier is a token that identifies multiple processes
or message exchanges within the system.

081109 203615 148 INFO dfs.DataNode$PacketResponder:
PacketResponder 1 for block blk_38865049064 139660 terminating

l

Date 081109

Time 203615

Level ' INFO

Component . dfs.DataNode$PacketResponder

Event Template . PacketResponder 1 for block <*> terminating
Parameters - blk_38865049064139660

Figure 1 Steps of Log Parsing

After the log parsing steps, the data needs to be digitized. The
word2vec (Church 2017) algorithm has been used to convert the tex-
tual parts of the log data into numerical values. The Mean/Mode
method commonly used in the literature has been employed to
address missing data, and to mitigate the impact of missing data,
all missing values have been replaced with zero (Lin and Tsai 2020).
Following digitization, anomaly labels generated by Hadoop ex-
perts have been appended to the end of the dataset. In the label
column, 0 is used for normal data and 1 for abnormal data.

PROPOSED METHOD

Detecting anomalies in log analysis is quite challenging because log
data consists of both numerical and categorical data. To enable the
analysis of this data, it first undergoes preprocessing. Through log
parsing, features are extracted from the dataset and transformed
into a vectorized form. Subsequently, this vectorized dataset is
analyzed using machine learning algorithms to detect anomalies.

Figure 2 illustrates the architecture of the proposed method. Par-
ticularly, the utilization of the word2vec algorithm for digitization
during log parsing has had a significant impact on the high perfor-
mance of experimental results. By employing this method, multi-
ple machine learning algorithms have been utilized for anomaly
detection from log records, resulting in high success rates. The
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Figure 2 Architecture of the Proposed Anomaly Detection
Method

log parsing process is crucial for using data in machine learning
algorithms.

SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) are used for classification prob-
lems using supervised learning. Typically, they classify by drawing
a line on a plane to maximize the distance between points of two
classes (M. A. Hearst and Scholkopf 1998). The main objective of
classification is to determine which class future data belongs to. In
Figure 3, the data is divided into two classes, black and white. A
line is drawn to separate these two classes, and the area between
them is called the margin. The larger the margin, the better the
two classes are separated. W denotes the weight vector, x denotes
the input vector, and b denotes the bias. Using these values, the
margin region remains between +1.

)

Support 4
Vectors

Support
Vectors

Figure 3 Working principle of Support Vector Machines

To classify low-dimensional data more efficiently, the kernel
method is employed. This method expands the available data
by multiplying it with kernel functions without increasing the
dimensionality of the data, making it more meaningful (Steinwart
and Christmann 2008). Two of the kernels used are the Polynomial
and the Gaussian RBF cubic kernel. The Polynomial kernel enables
processing of data from 2 dimensions to 3 or more dimensions
(Moghaddam and Hamidzadeh 2016). It classifies by calculating
the similarity of each point to a specific point using a normal
distribution. The spread of the distribution is controlled by the
gamma hyperparameter. A smaller gamma parameter leads to a
wider distribution. To avoid overfitting, the gamma value should
be reduced while for underfitting, it should be increased. In this
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Table 1 Characteristics of the HDFS Log Dataset

Dataset | Duration | Number of Log Lines | Number of Anomalies (Blocks)
HDEFS | 38.7 hours 11,175,629 16,838
Table 2 Data with Missing Values Completed by Digitizing Using Word2Vec
Column1 | Column2 | Column 3 Column 23 | Column 24 | Labels
5 5 5 0 0 0
5 22 9 23 21 0
22 5 5 0 0 1
22 26 26 4 21 0
5 9 11 23 21 1
5 26 3 21 0 1
study, classification methods using normal distribution along with
polynomial and cubic kernels were employed, resulting in a high Dy(x) = \/ (x —u)TS—1(x — ) (3)

success rate.

K NEAREST NEIGHBORS ALGORITHM

kNN is a supervised learning algorithm used for both classification
and regression problems. It finds the k nearest neighbors to a new
point and makes predictions based on those neighbors (G. Guo
and Greer 2003; O. Tonkal and Kocaoglu 2021). Three different
distance calculation methods have been used in this study. The
Euclidean distance is used to measure proximity in the kNN algo-
rithm. Euclidean distance linearly measures the distance between
two points. The calculation of Euclidean distance between points
P=(x1, x2, ..., xn) and Q=(y1, y2, ..., yn) is given in Equation 1.

n

Yo (xi—yi)? o

i=1

Dpg =

The Minkowski distance is expressed with a general formula
and is used to define various distance metrics for different values
of p. It is a generalization of distance metrics such as the Euclidean
distance commonly used in machine learning, clustering, and data
mining applications. The Minkowski distance between any two
points P and Q, where P=(x1, X2, ..., xn) and Q=(y1, y2, ..., yn), is
calculated according to Equation 2.

n p
Dpg = (E | — yi|p> 2
i—1

The Mahalanobis Distance is a distance measurement system
used in computer science and many other fields. Its main differ-
ence from other measurement systems is that it performs distance
separation on an elliptical plane. The Mahalanobis distance is cal-
culated as the square root of the product of the difference between
the value vector and the mean, the inverse of the covariance matrix,
and the transpose of the difference between the value vector and
the mean. Equation 3 illustrates the calculation of the Mahalanobis
distance.
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PERFORMANCE METRICS FOR EVALUATING THE PRO-
POSED METHOD

In this study, the success of the proposed method was assessed
using the following criteria sequentially. Accuracy and Precision
measurements were conducted according to Equations 4 and 7,
respectively. These equations utilize parameters such as TN (true
negatives), TP (true positives), FN (false negatives), and FP (false
positives). The F-Score derived from the cumulative sum of Ac-
curacy and Precision was calculated in Equation 8. Additionally,
Precision was computed in Equation 7, and Specificity was deter-
mined in Equation 6.

Accuracy = TP+ TN 4
TP+TN+FP+FN

Sensitivity = TP]—HI—% (5)

Specificity = 4TNTf FP (6)

Precision = 7TPTFP @)

F-Score = _ 2P (8)

2-TP+FP+FN
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Table 3 Classification Test Results

Classification Method | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | F-Score (%)

SVM

Linear 0.9794 0.9944 0.9644 0.9655 0.9797

Polynomial 0.9958 0.9978 0.9939 0.9939 0.9958

Cubic 0.9978 1 0.9956 0.9956 0.9978
kNN

Euclidean 0.9694 0.9806 0.9583 0.9592 0.9698

Minkowski 0.9725 0.9856 0.9594 0.9605 0.9729

Mahalanobis 0.9761 0.9950 0.9572 0.9588 0.9766

CONCLUSION H. Saadatfar, H. F. and H. Deldari, 2012 Predicting job failures in

Detecting anomalies from large log data is quite challenging. In
this study, log parsing was conducted using word2vec on datasets
containing both numerical and categorical data such as the HDFS
dataset. Experimental test results have demonstrated high success
using machine learning algorithms such as SVM and kNN. In
the future, testing success results with different machine learning
algorithms is planned.
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ABSTRACT In this study, the Biogeography-Based Optimization (BBO) algorithm was effectively utilized to

KEYWORDS
predict carbon dioxide (CO,) emissions. In the context of combating global warming and climate change, mak-  CO; emissions
ing accurate and reliable CO, emission predictions is critically important for developing environmental policies Biogeography-

and strategies. Accordingly, the motivation for our study is to contribute to environmental decision-making
processes by improving the accuracy of CO, emission predictions. BBO is a nature-inspired optimization
method used to analyze complex relationships and identify significant features within a dataset. The focus
of the study is to accurately predict the “share_global _coal co2” parameter, and for this purpose, the BBO
algorithm was employed to identify the 20 most influential features. The analyses revealed that the Gradient
Boosting algorithm provided the lowest Mean Squared Error (MSE) value of 0.347408, indicating that the
model can make predictions closer to the actual data. Additionally, the use of interpretable artificial intelligence
models such as SHAP and LIME made the model’'s predictions more understandable and clearly demon-
strated the impact of specific features on the predictions. The results obtained provide significant guidance
for environmental policymakers and energy experts. The effectiveness of the BBO algorithm in predicting
CO, emissions can contribute to more informed and data-driven decisions in environmental analysis and
policy-making processes. This study emphasizes the importance of artificial intelligence and optimization
techniques in achieving sustainability goals and helps develop more effective strategies in environmental

Based optimiza-

tion (BBO)
Explainable Al
SHAP

LIME

management.

INTRODUCTION

Addressing global environmental issues and climate change, the
reduction of carbon dioxide (CO;) emissions and CO, capture
technologies play a crucial role. In this context, the Biogeography-
Based Optimization (BBO) algorithm has been employed to esti-
mate the “share_global_coal_co2” parameter. Inspired by natural
biogeographic processes, BBO is an optimization algorithm used
to analyze complex relationships and identify significant features
within a dataset. This study utilizes a dataset comprising various
parameters, including share global coal CO,, share global cumu-
lative gas CO;y, share global cumulative LUC CO;, share global
cumulative flaring CO,, cumulative oil CO,, share global gas CO»,
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"cemozkurt@subu.edu.tr (Corresponding author)
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share global cumulative coal CO,, cumulative CO, including LUC,
total GHG, cumulative LUC CO,, share global cumulative cement
CO,, CO, growth percentage, cumulative cement CO;, CO; in-
cluding LUC per GDP, oil CO;y, coal CO;, temperature change
from GHG, consumption CO; per GDP, share global LUC CO,,
cement CO,, cumulative coal CO,, primary energy consumption,
other industry CO,, share global cumulative oil CO,, CO; per GDP,
cumulative gasCOy, temperature change from CO,, nitrous oxide,
share global cumulative CO; including LUC, and share global
CO;.

By applying the BBO algorithm, the study aims to reduce these
parameters to the 20 most influential ones for accurately predict-
ing the “share_global_coal_co2” parameter. Artificial intelligence
techniques significantly contribute to reducing CO, emissions and
developing sustainable energy solutions. For instance, Delanoé
et al. (2023) evaluated the positive and negative impacts of Al mod-
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els on CO; emissions reduction. In this study, three different Al
models were utilized for energy demand management in Brazilian
households, photovoltaic power forecasting in Tunisia, and the
electric vehicle routing problem in Sweden and Luxembourg. The
results indicated that Al models can achieve significant CO, reduc-
tions depending on the context. Yan et al. (2020) developed a hybrid
artificial intelligence model to predict the physical and chemical
changes in coal seams during CO, geological sequestration. This
model, integrating back propagation neural network (BPNN), ge-
netic algorithm (GA), and adaptive boosting algorithm (AdaBoost),
was optimized to accurately predict coal strength alterations due
to CO, adsorption. The study demonstrated that the hybrid model
could effectively and accurately predict these changes. Qerimi and
Sergi (2022) examined the legislative processes related to carbon
capture and storage (CCS) technology. This study emphasized
the importance of CCS and Al technologies in achieving climate
goals and argued for the necessity of new regulations to govern
the development, design, and deployment of such technologies.

Another study explored the use of artificial neural network
(ANN) tools to enhance the efficiency of CO; storage projects by
predicting critical performance indicators like methane recovery
and CO; injection. The findings showed that ANN models could
accurately predict performance in CO, storage projects. Thanh
et al. (2022) used hybrid artificial intelligence models to predict the
deliverability of underground natural gas storage sites. This study
highlighted the importance of developing intelligent systems that
can accurately predict natural gas storage deliverability in various
geological formations. Stef et al. (2023) investigated the impact
of high-quality institutional measures on global CO; emissions
reduction.

The study revealed that effective climate change policies must
be associated with improvements in property rights protection,
citizen participation in elections and freedom of expression, and
corruption control. Heo et al. (2022) developed an explainable arti-
ficial intelligence (XAI) model to create a net-zero carbon roadmap
for the petrochemical industry. This model produced various sce-
narios of offshore wind power and conducted techno-economic
and environmental assessments. The findings underscored the fea-
sibility and effectiveness of Al-driven net-zero carbon solutions.

This literature review highlights the significance and applica-
tion areas of artificial intelligence and optimization algorithms in
reducing CO, emissions. By examining the effectiveness of the
BBO algorithm in predicting the “share_global_coal_co2” parame-
ter, this study aims to contribute to more informed and data-driven
decision-making processes in environmental analysis and policy
development.

MATERIALS AND METHODOLOGY

This dataset contains various climate variables, greenhouse gas
emissions, and economic indicators. Compiled to examine global
carbon emissions and the environmental impact of various human
activities, this dataset consists of a total of 32 different parameters.
Parameters like “share_global_coal_co2” represent coal-related
carbon dioxide emissions, while others like “cumulative_oil_co2”
and “cumulative_gas_co2” indicate emissions from oil and gas
sources, respectively. Economic indicators such as “gdp” and “con-
sumption_co2_per_gdp” can be used to analyze the relationship
between economic growth and greenhouse gas emissions. This
dataset can be utilized with various machine learning models to
predict the “share_global_coal_co2” parameter and can play a
significant role in issues such as energy policy development and
climate change strategy determination.
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Dataset

This dataset contains various climate variables, greenhouse gas
emissions, and economic indicators. Compiled to examine global
carbon emissions and the environmental impact of various human
activities, this dataset consists of a total of 32 different parameters.
Parameters like “share_global_coal_co2” represent coal-related
carbon dioxide emissions, while others like “cumulative_oil_co2”
and “cumulative_gas_co2” indicate emissions from oil and gas
sources, respectively. Economic indicators such as “gdp” and “con-
sumption_co2_per_gdp” can be used to analyze the relationship
between economic growth and greenhouse gas emissions. This
dataset can be utilized with various machine learning models to
predict the “share_global_coal_co2” parameter and can play a
significant role in issues such as energy policy development and
climate change strategy determination.

Biogeography-based Optimization (BBO)

BBO is a natural optimization algorithm based on biogeography
principles, inspired by natural processes modeling the dispersion
and migration of biological species among habitats. This algorithm
utilizes mathematical models representing the quality of habitats
and migration rates between species to optimize the fitness values
of the population. The fundamental working principle of BBO
involves the movement of the best individuals among habitats
to improve the fitness values of a population initially generated
randomly. This process enhances and optimizes the fitness values
of the population over time. BBO can be effective in complex
and multi-dimensional optimization problems, although it may
require appropriate parameter settings and modeling tailored to
the problem context.

Machine Learning

Machine learning is a branch of artificial intelligence where com-
puter systems have the ability to learn from data. These systems
create models using data to perform specific tasks or solve prob-
lems, and they can analyze new data or make predictions using
these models. Machine learning is data-driven as it relies on learn-
ing from experiential data. Fundamentally, it is a combination
of disciplines such as data analysis, statistics, mathematics, and
computer science. Machine learning algorithms are commonly
used in various tasks such as classification, regression, clustering,
dimensionality reduction, and pattern recognition. Examples in-
clude decision trees, support vector machines, gradient boosting
machines, and deep learning networks. Machine learning has a
wide range of applications across various industries and fields,
including healthcare, finance, automotive, retail, and more. How-
ever, training these models requires careful management of factors
such as proper hyperparameter tuning and data quality.

Artificial Neural Networks (ANNs) are a machine learning model
that mimics the workings of the human brain and has been suc-
cessfully used in many fields in recent years. This model enables
information processing and learning by forming a network of neu-
rons, the basic units of a neural network. Artificial neural networks
have structures consisting of multiple layers; each layer receives in-
puts from the previous layer and processes them. These processes
are typically carried out with non-linear activation functions. Ar-
tificial neural networks can handle a wide range of data but may
require large amounts of data and have lengthy training times.
However, using a subfield called deep learning, they can exhibit
superior performance in large and complex datasets. One of the
fundamental advantages of artificial neural networks is their abil-
ity to optimize learning capabilities with various architectures and
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hyperparameters. However, it’s important to deal with issues such
as overfitting and ensure good generalization to data outside the
training set.

n
z=)Y wx;+b (1)
i=1

In Equation 1, "z" represents the value of the objective function,
while "w;" and "x;" represent the components of the weight and
input data, respectively. "b" is a constant term. The summation
calculates the value of this objective function by taking a combina-
tion of weights and inputs over a specific dataset. Thus, the BBO
algorithm attempts to find the best solution in a particular problem
by optimizing this equation.

XGBoost Recently, XGBoost (eXtreme Gradient Boosting) has be-
come increasingly popular for classification and regression prob-
lems, especially for structured data, yielding effective results. This
machine learning algorithm constructs a strong predictor by com-
bining many weak predictors, often referred to as decision trees.
Using a technique called gradient boosting, at each step of the
model, a new predictor is added to minimize the loss (error). XG-
Boost applies this gradient descent to decision trees and sequen-
tially adds weak predictors. Thus, the model learns increasingly
complex relationships and makes more accurate predictions (Chen
and Guestrin 2016). One significant advantage of XGBoost is its
ability to be optimized for different datasets and problems by ad-
justing its hyperparameters. Additionally, it can work quickly
and handle large datasets well. However, its high performance
and flexibility come at a cost. As the complexity of the model
increases, both training and prediction times may increase. There-
fore, it’s essential to consider factors like computational resources
and hyperparameter optimization when using XGBoost.

F(x) = L(0) + Q(0) 2

In Equation 2, "F(x)" represents the predicted value of the target
variable, "L(6)" represents the loss function, and "(}()" represents
the regularization term. Essentially, the XGBoost algorithm adds
weak predictors sequentially by minimizing the residuals from the
previous model’s predictions. In this equation, "L(0)" calculates
the error between the predicted and actual values of the features,
and "()()" is the regularization term that limits the complexity of
the model. Thus, the XGBoost algorithm aims to optimize predic-
tion performance by creating the most suitable model through the
combination of the loss function and regularization term.

n

L(6) = Y —(yiloglog(9;) + (1 — y;) loglog(7;)) 3)

i=1

In Equation 3, the expression "L(6)" represents a loss function
that measures how far the model’s predictions are from the true
labels. 0 represents the model parameters. In the equation, "y;"
symbolizes the true label values, and "iJ;" represents the predictions
made by the model. This loss function, used for binary classifica-
tion problems, calculates the negative log probability sum over the
predicted class probabilities for each data point’s true class labels.
Thus, the algorithm aims to learn the best model parameters by
minimizing this loss function and aims to increase classification

accuracy.

A&,
Q@) =T+ 3 ) @ (4)
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In Equation 4, the expression "()(0)" represents a regularization
term that limits the complexity of the model.  and A are regular-
ization parameters and regularization coefficients, respectively. In
the equation, "T" represents the number of trees, and "wj" repre-
sents the weights of each tree. This regularization term is used to
reduce the tendency of the model to overfit and improve its gen-
eralization ability. The first term controls the number of trees and
their complexity, while the second term regulates the complexity
of the trees by the square of their weights. This regularization term
aims to prevent overfitting by helping the model become simpler
and more generalizable. Thus, the XGBoost algorithm uses this
regularization term to control the complexity of the model while
minimizing the loss function.

LightGBM is a machine learning algorithm that has gained popular-
ity recently, particularly for working effectively with large datasets.
This algorithm constructs decision trees using the gradient boost-
ing method, but unlike other traditional gradient boosting-based
methods, LightGBM builds trees by considering specific features.
This allows it to create more efficient trees by taking into account
different levels of importance of features in the dataset (Zhang
et al. 2020). LightGBM can handle large datasets well because
it utilizes parallel computing capabilities to reduce training and
prediction times. Additionally, it offers advantages such as low
memory usage and high scalability. However, it’s essential to
properly adjust some hyperparameters of Light GBM; otherwise,
you might encounter issues like overfitting or other problems that
could negatively impact the model’s performance.

Fn = Fy1(x) +1 - hm(x) ®)

In Equation 5, "Fj;," represents the m-th prediction of the func-
tion, while "F,,;_1(x)" represents the sum of predictions made in
the (m-1)th stage. 1 represents the learning rate, and "1, (x)" rep-
resents the weak predictor added in the m-th stage. LightGBM
constructs a tree-based model using the gradient boosting method.
This equation shows adding a new tree to the current predictions
at each stage of the model and adding the predictions of the tree
with the learning rate to the total predictions. This process allows
the model to learn complex relationships in the dataset without in-
creasing complexity and preventing overfitting. Thus, LightGBM
is successfully used across a wide range of applications, providing
high accuracy and fast training times.

Random Forest (RF) is a widely used machine learning algorithm
for classification and regression problems. This algorithm con-
structs a predictor by aggregating many decision trees. Each de-
cision tree is trained on a subset of data, randomly sampled from
the original dataset (bootstrap sampling), and features selected
randomly (subspace sampling). Then, each tree makes its predic-
tion, and in the case of classification, the final prediction is made
by voting, or in regression, by taking the average. Random Forest
can learn more complex decision boundaries than a single tree
and reduces the risk of overfitting. Additionally, it is robust to
noise and missing data in the input dataset. However, it’s crucial
to adjust RF’s hyperparameters (e.g., number of trees, size of fea-
ture subsets, etc.), as otherwise, its performance may degrade or
overfitting may ocur (Liaw and Wiener 2002).

1 N
f@) = 5 L filx) ©

=1

In Equation 6, "f(x)" represents the predicted value of the func-
tion, "N" is the number of data points, and "f;(x)" represents the
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prediction of each decision tree. The Random Forest algorithm
is an ensemble learning technique where many decision trees are
collectively constructed, and the average prediction of each tree is
taken. In this equation, "f;(x)" shows the prediction made by each
tree individually, while the term '%” provides the final prediction
by averaging the predictions of all trees. This method balances the
variance and errors within each tree while collectively obtaining
a stronger and more generalized prediction. As a result, the Ran-
dom Forest algorithm addresses complexity in the dataset while
reducing the risk of overfitting, thus providing stable and accurate
predictions.

Support Vector Machine (SVM) is a powerful machine learning al-
gorithm used for classification and regression tasks. It determines
a decision boundary in the feature space for classification or pre-
dicts a regression function, aiming to achieve the widest possible
margin between classes, supported by a subset of training data
points called support vectors (Gunn 1998). SVM works effectively
on linearly separable problems and can handle nonlinear prob-
lems by transforming the feature space using kernel functions. Its
advantages include effectiveness with high-dimensional datasets,
reducing the risk of overfitting, and its ability to handle various
data structures through different kernel functions. However, it’s
crucial to adjust SVM'’s hyperparameters (e.g., the C parameter,
kernel type, etc.) correctly to avoid performance degradation or
overfitting.

f(x)=wlx+b 7)

In Equation 7, "f(x)" represents the predicted classification for
input data "x", while "w" denotes the weight vector and "b" stands
for the bias term. SVM classifies data by creating a separation
line between two classes. The "w" vector indicates the normal and
slope of the separation plane, while the "b" bias term represents the
distance of the plane from the origin. SVM utilizes this equation
to find an optimal separation plane and is typically effective in

classification problems.

margin =

2

El ©

Equation 8 defines a concept known as the "margin" in the
Support Vector Machine (SVM) algorithm. The "margin" indicates
how far the separation plane is from the data points. The equation
divides the norm (length) of the weight vector "||w||" and multiplies
the result by two to calculate the margin. SVM aims to maximize
the margin to find the best separation plane or hyperplane. Thus,
SVM typically provides a wide margin for classifying data points
and can better adapt to new data.

o1
mznzmzze§||w|\2 )

Equation 9 represents the norm (length) of the weight vector
"||lw]|". The goal of SVM is to classify data points by creating a
separation plane between two classes. This equation is a mathe-
matical expression used to determine the decision boundaries of
SVM. By using this equation, SVM optimizes the weight vector
and bias term (b) to find the equation of the separation plane (or
hyperplane). Thus, it creates a separation plane that best classifies
the data points. In summary, SVM aims to minimize the result of
this equation to classify data points optimally.

K(x;,x;) = ¢(x;) T p(x)) (10)
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Equation 10 represents the kernel function in the Support Vector
Machine (SVM) algorithm. It denotes the measure of the dot prod-
uct between two input vectors. "$(x)" symbolizes a feature map
that transforms the input data into a higher-dimensional feature
space. This function enables SVM to classify linearly inseparable
data. By using this kernel function, SVM makes the data linearly
separable and then finds a separation plane (or hyperplane). This
kernel function plays a critical role in making the data linearly
separable.

K-Nearest Neighbors (KNN) is a widely used machine learning al-
gorithm for classification and regression problems. This algorithm
relies on the nearest neighbors of a data point to determine its
class or value. The distance between each data point and all other
points in the feature space is calculated, and then the K nearest
neighbors of the input data point are selected. In classification, a
prediction is made based on the classes of these neighbors, while
in regression, the average of the neighbors’ values is used. KNN
is a non-parametric algorithm, meaning it makes no assumptions
about the underlying data distribution. It’s also a versatile algo-
rithm that can effectively handle both numerical and categorical
data. However, it may suffer from computational inefficiency with
large datasets, and selecting the correct value for K is crucial as
it can affect the performance of the model (Kramer and Kramer
2013).

d(x;, xj) =

; 11)

n
Y (xip —xp)2
p=1

In Equation 11, "d(x;, x;)" represents the Euclidean distance
between two data points, "x;" and ”xj”. "n" denotes the dimen-
sionality of the data points, while "x; ," and "x; ," respectively
represent the "p"-dimensional features of data points "i" and "j".
The KNN algorithm uses the labels of neighboring data points to
classify a new data point. This distance measurement determines
the similarity or distance between one data point and another. The
KNN algorithm classifies a new data point by considering the
closest neighbors up to a specified "k" number. This distance mea-
surement plays a fundamental role in the classification process of
KNN, evaluating the relationship between data points to provide
the most appropriate classification.

y =mode(y1,y2,...,Yk) (12)

non

In Equation 12, "y" represents the predicted value of the target
variable, while "y1, >, ..., y;" denote the class labels of neighbor-
ing data points. The "mode" function determines the most fre-
quently occurring class label among the neighboring data points,
i.e., it takes the mode value. The KNN algorithm considers the
labels of the nearest neighbors to classify a data point. In this
method, the predicted class for a new data point is often the mode
value obtained from the class labels of its neighbors. Thus, the
KNN algorithm classifies a data point based on its neighboring
points, and this equation explains this classification process.

y=1x Z,%‘ (13)
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In Equation 13, it represents the classification process of the
K-Nearest Neighbors (KNN) algorithm. While "y" denotes the
predicted class of a new data point, "y;" indicates the class labels
of neighboring data points. "k" specifies the number of neighbors
used. This equation is a fundamental step in the classification
process of the KNN algorithm. The predicted class for a new data
point is determined by taking the average of the class labels of its k
nearest neighbors. Thus, the data point adopts the predicted class
based on the class labels of its neighbors. This equation expresses
a simple yet effective classification method of the KNN algorithm.

Gradient Boosting is a powerful machine learning technique for
both classification and regression problems. This method con-
structs a strong predictor by combining many weak predictors.
Each weak predictor focuses on correcting the errors of previous
predictions. Using an optimization algorithm called gradient de-
scent, Gradient Boosting attempts to minimize these errors. This
process continues with the addition of a new weak predictor at
each step, gradually reducing the model’s errors and making more
accurate predictions. One advantage of Gradient Boosting is its
ability to combine predictors of different types, usually decision
trees, which enhances its capability to learn different data struc-
tures and relationships. However, it’s crucial to properly adjust
the hyperparameters of Gradient Boosting, such as learning rate,
tree depth, and number of trees, or else issues like overfitting or
longer training times may arise (Bentéjac et al. 2021).

Fo(x) =0 (14)

In Equation 14, it represents the initial prediction in the Gradient
Boosting algorithm. "Fy(x)" represents the initial prediction of a
new data point, and this initial value is zero. The Gradient Boosting
algorithm constructs a prediction model by sequentially adding
weak predictors. Initially, the prediction model starts at zero. This
equation specifies the beginning of the process for building the
prediction model in the Gradient Boosting algorithm.

Fn(x) = Fy_1(x) + p * by (x) (15)

In Equation 15, "F;(x)" represents the prediction of the new
model, while "F,_1(x)" denotes the prediction of the previous
model, and "hy,(x)" represents the m-th weak predictor. "p" in-
dicates the learning rate. The Gradient Boosting algorithm uses
this equation when adding the next weak predictor to the current
prediction model. In other words, in each iteration, the predictions
of the current model are updated by adding the predictions of
the new predictor multiplied by the learning rate. This way, the
algorithm controls the effect of the predictor added in the next
step. This equation explains the process of iteratively improving
the prediction model in the Gradient Boosting algorithm.

Explainable Artificial Intelligence (XAl)is a branch developed to
understand and explain the decisions and predictions of machine
learning and artificial intelligence models. XAI emerges from the
effort to interpret the inner workings of complex models in a way
that is more suitable for human understanding. These techniques
contribute to addressing significant issues such as increasing the
model’s reliability by explaining why and how decisions are made,
identifying errors, and addressing fairness and ethical concerns
(Ali et al. 2023). XAl encompasses various techniques that can help
understand the features, variables, and relationships underlying a
model’s predictions.

These include assessing feature importance, visualizing pre-
diction boundaries, providing instance-based explanations, and
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analyzing interactions between features. However, XAl methods
can themselves be complex, often depending on the complexity of
the model, and it’s crucial to strike a balance between explainability
and model performance.

SHAP (Shapley Additive Explanations), an explainable artificial
intelligence (XAI) technique that uses Shapley values to explain
the contribution of each feature to model predictions. Shapley
values originate from cooperative game theory and estimate the
contribution of a feature to a model prediction by considering its
value when combined with other features. SHAP is commonly
used to make complex machine learning models (such as deep
learning or gradient boosting) interpretable. This technique mea-
sures the impact of each feature on predictions while also showing
how this impact varies for a specific example or observation. Thus,
it provides a detailed understanding of why and how a partic-
ular prediction was made. SHAP can be used for tasks such as
evaluating feature importance, examining interactions between
features, and explaining how each feature contributes to model
predictions. However, SHAP values can be challenging to inter-
pret, and they can be computationally expensive when working
with large datasets or complex models (Das and Rad 2020).

¢i(f) = % Y [f(xn(i)) - f(xn)} (16)

Equation 16 represents an explanation method used in the
SHAP (SHapley Additive exPlanations) algorithm to measure the
contributions of features to the model prediction. "¢;(f)" repre-
sents the contributions of different features, while "f" denotes the
model prediction, "N" is the number of data points, "7r" is a permu-
tation of data points, ”(xn(i))" represents the i-th data point in a
specific permutation, and "x," denotes the permutation itself. This
equation considers all permutations of data points to calculate the
contribution of each feature to the model prediction. The SHAP
algorithm is used to understand complex model predictions and
explain the impact of each feature on the prediction.

LIME is a technique used in the field of explainable artificial intel-
ligence (XAI) to explain how model predictions are made for a
specific example or observation. Regardless of the complexity of
the model, LIME makes any machine learning model interpretable.
This technique creates a surrogate model to understand which
features or variables are influential in making a prediction at a
particular point. The surrogate model selects features to mimic the
predictions of the original model locally. LIME generates data sam-
ples by making random changes around the data point to create the
local model, and uses the predictions of each sample in the original
model. Finally, by examining the behavior of the local model on
these generated samples, LIME explains how the original model
made a specific prediction. LIME is particularly useful when work-
ing with complex models and in situations where understanding
why certain predictions are made is difficult. However, interpret-
ing LIME results can be challenging, and careful parameter tuning
may be required to obtain accurate results (Das and Rad 2020).

e(x) = argmin(f, g, 7tx) + QU(g) 17)
8€g

In Equation 17, an explanation method in the LIME (Local In-
terpretable Model-agnostic Explanations) algorithm is described.
"e(x)" represents the explanation of a particular example, while the
"arg min" operator denotes the one with the smallest value within
a given set. "g" represents the model prediction, "f" is the true func-

tion, and "7t," indicates the weights of other examples around the
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sample "x". "Q)(g)" is a term limiting the complexity of the model.
This equation is formulated as an optimization problem to find the
explanation model that best explains the prediction of a particular
example. LIME provides local explanations to understand the
decisions of complex machine learning models.

RESULTS

In this study, the Biogeography-Based Optimization (BBO) algo-
rithm was used to predict the “share_global_coal_co2” parame-
ter. BBO is an optimization algorithm inspired by natural biogeo-
graphic processes, used to determine complex relationships in the
dataset and identify the most important features. In this study, the
BBO algorithm was used to predict the “share_global_coal_co2”
parameter, and the 20 most effective parameters among other pa-
rameters in the dataset were identified. BBO assists in predicting
the “share_global_coal_co2” parameter by selecting from various
parameters in the dataset, thereby helping to predict it more ac-
curately. Therefore, the BBO algorithm was used to predict the
“share_global_coal_co2” parameter and understand the impact of
specific features. The 20 most important features identified by the
BBO algorithm were fed into machine learning models. They were
evaluated using metrics such as Mean Squared Error (MSE) and
R-squared Score.

Mean Squared Error (MSE) is a metric used to evaluate predic-
tions made by machine learning algorithms. This measurement
calculates the average of the squared differences between the ac-
tual values and the predicted values. Lower MSE values indicate
that the predictions are closer to the actual values, while higher
MSE values indicate that the predictions are farther from the actual
values. Therefore, MSE is an important measure used to assess a
model’s predictive ability.

The R-squared (R"2) score is a metric used to evaluate predic-
tions made by machine learning algorithms. This score determines
how well a model fits and explains the data. R-squared measures
the proportion of the variance in the dependent variable that is
predictable from the independent variables. The values typically
range from 0 to 1; the closer it is to 1, the better the model explains
the data. However, it can also take negative values, indicating that
the model performs worse than a horizontal line. In summary, the
R-squared score is a measure of how well a model fits the data.

The evaluation results based on the top 20 features identified by
the BBO algorithm are presented in Table 1. The Gradient Boosting
algorithm, which gave the lowest Mean Squared Error (MSE) value,
has been explained using interpretable artificial intelligence mod-
els SHAP and LIME. The explanations are presented in Figures 1
and 2.

In Figure 1, the average impact of various greenhouse gas
(GHG) emissions and carbon dioxide (CO;) sources on the model
output is assessed using SHAP values. In the figure, total green-
house gas emissions (total_ghg) and the share of global cumulative
cement CO; (share_global_cumulative_cement_co2) stand out as
the factors with the highest average impact on the model out-
put. Nitrous oxide (nitrous_oxide) and the share of global CO,
(share_global_co2) also have significant impacts, while factors such
as other industry CO; (other_industry_co2) and the share of global
cumulative coal CO; (share_global_cumulative_coal_co2) have
less pronounced effects.

Lower impacts are observed among factors such as cumula-
tive land use change CO, (cumulative_luc_co2) and temperature
change from GHG (temperature_change_from_ghg). Overall, the
figure demonstrates that greenhouse gases and various CO; emis-
sion sources contribute to model outcomes to varying degrees.
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Figure 1 Output of SHAP, an explainable artificial intelligence model

Figure 2 The output of LIME, an explainable artificial intelligence
model

In Figure 2, the “GradientBoostingRegressor” algorithm and
the interpretable artificial intelligence model “LIME” were used
to create predictions for the share of global coal emissions. The
predicted value is determined as “-0.20”. According to the anal-
ysis, the features that the model gives the most importance to
are “coal_co2” and “share_global_luc_co”, and it is observed that
changes in these features have significant effects on the prediction.
Additionally, as indicated in the visual, there is a negative correla-
tion with the “share_global” feature’s prediction, meaning that as
this value increases, the predicted share of global coal emissions
decreases

CONCLUSION

Our results demonstrate that the Biogeography-Based Optimiza-
tion (BBO) algorithm is an effective method for predicting the
“share_global_coal_co2” parameter. The BBO algorithm has
achieved successful outcomes by utilizing various parameters in
the dataset to identify complex relationships and determine sig-
nificant features. In this study, the 20 most important features
identified by the BBO algorithm were integrated into machine
learning models to evaluate prediction performance.

Evaluations conducted using metrics such as Mean Squared
Error (MSE) and R-squared score have indicated that the Gradient
Boosting algorithm provides the lowest MSE value , suggesting
that the predictions are closer to the actual values. These results
support the use of interpretable artificial intelligence models such
as SHAP and LIME to enhance the accuracy of the model.
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Table 1 Results of evaluation metrics of machine learning algorithms.

Machine learning ~ Mean Square Error (MSE)

R-squared Score

ANN 4.017079
XGBoost 0.572459
LightGBM 0.372869
RF 0.410437
SVM 17.084162
KNN 26.406132

Gradient Boosting  0.347408

-9.101274

0.987030

0.991552

0.990700

0.612933

0.401730

0.972128

SHAP and LIME analyses have rendered the model’s predic-
tions more understandable. Specifically, the GradientBoostingRe-
gressor algorithm and LIME model utilized to predict the share
of global coal emissions have emphasized the effects of specific
features such as “coal_co2” and “share_global_luc_co” on the pre-
diction. These findings offer valuable insights that can be utilized
in making critical decisions in areas such as energy policies and
environmental management strategies.

In conclusion, this study demonstrates that the Biogeography-
Based Optimization algorithm is an effective method for predict-
ing the “share_global_coal_co2” parameter. Furthermore, it un-
derscores the importance of utilizing interpretable artificial intelli-
gence models to elucidate and render predictions more comprehen-
sible. These findings serve as a valuable guide for environmental
policymakers and energy experts.
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ABSTRACT

KEYWORDS

Imbalanced datasets pose significant challenges in various fields including the classification of medical condi-
tions such as diabetes. This study investigates six methodologies for handling imbalanced diabetes datasets
aiming to enhance classification performance through diverse preprocessing techniques. The methodologies
are evaluated using multiple models: Logistic Regression, Decision Tree, Random Forest, Gradient Boosting,
SVM, KNN, Naive Bayes, XGBoost, LightGBM, and CatBoost. The preprocessing techniques include simple
implementation, data standardization, normalization, standardization with K-Fold cross-validation, and two
variations incorporating the SMOTE oversampling technique. The effectiveness of each methodology is
assessed based on accuracy, precision, recall, and F1 scores across different classifiers. Results indicate that
standardization combined with K-Fold cross-validation consistently enhances model performance. Additionally,
the integration of the SMOTE technique significantly improves results, especially for Gradient Boosting and
SVM classifiers. Among the tested models, CatBoost demonstrated exceptional performance in handling
imbalanced datasets, achieving an accuracy of 95.18%, precision of 91.10%, recall of 95.52%, and an F1
score of 93.26%. This study underscores the importance of tailored preprocessing techniques in improving
the classification of imbalanced medical datasets, highlighting their potential to enhance predictive accuracy in

Machine learning
Imbalanced
dataset

Diabetes classifi-
cation

Ensemble learn-

ing

critical applications.

INTRODUCTION

Diabetes is a long-term metabolic disease characterized by hyper-
glycemia (elevated blood glucose levels) due to deficiencies in the
function of insulin secretion or both that damages the heart, blood
vessels, eyes, kidneys, nerves, and heart over time (Association
2009). The most common kind of diabetes, Type 2, usually ap-
pears in adulthood as a result of either insufficient or resistant
insulin production. Over the past 30 years, its prevalence has
skyrocketed globally across all income categories. The hallmark
of type 1 diabetes, also known as juvenile or insulin-dependent
diabetes, is insufficient insulin production by the pancreas. For
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those with diabetes, having affordable access to treatment—in par-
ticular insulin—is essential. By 2025, the global goal is to stop the
rise in diabetes and obesity. Approximately 422 million people
worldwide suffer from diabetes, most of whom live in low- and
middle-income countries. The disease is directly responsible for
1.5 million fatalities per year. Over the past few decades, there
has been a steady increase in both the number of cases and the
incidence of diabetes. Therefore, a tool that can help physicians
identify this fatal disease earlier and halt its course is desperately
needed (Abdulhadi and Al-Mousa 2021).

Machine learning techniques offer immense potential to en-
hance medical research and clinical care, particularly as providers
increasingly utilize electronic health records. Two areas ready
to benefit from the application of ML in the medical field are
diagnosis and outcome prediction (Shivahare et al. 2024). This
encompasses the potential identification of high-risk scenarios for
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medical emergencies, such as relapse or transitioning into another
disease state (Sidey-Gibbons and Sidey-Gibbons 2019). Recent
successes include predicting the progression from pre-diabetes to
type 2 diabetes using routinely-collected electronic health record
data (Anderson et al. 2016).

Though in machine learning and Al, class imbalance in datasets
is a common issue in real-world dataset analysis, particularly in
industries like healthcare, finance, and telecommunications. It
can lead to negative effects if incorrectly classified minority cases
are identified. Two strategies have been developed in research:
external techniques to rebalance distributions before training and
internal algorithms to manage imbalance directly. The research
aims to provide solid solutions for handling class imbalance in
real-world data analysis situations (Ramyachitra and Manikandan
2014).

Several studies have explored predicting diabetes using various
datasets and criteria resulting in varying accuracies and perfor-
mance levels. Chang et al. (2022) evaluated interpretable machine
learning models within the Internet of Medical Things (IoMT)
using the Pima Indians diabetes dataset with random forest out-
performing Naive Bayes and J48 decision tree across multiple
metrics (Chang et al. 2023). Naz & Ahuja (2020) focused on pre-
dicting diabetes onset achieving high accuracy rates with Deep
Learning showing the highest accuracy (Naz and Ahuja 2020).
Rajni & Amandeep (2019) introduced the RB-Bayes framework
combining methods to improve prediction accuracy emphasizing
early detection (Rajni and Amandeep 2019). Bhoi et al. (2021)
employed multiple machine learning algorithms with Logistic Re-
gression emerging as the top performer (Bhoi ef al. 2021). Patra &
Khuntia (2021) introduced the sdknn classifier showing significant
improvement over conventional techniques (Patra and Khuntia
2021). Miao (2021) developed prediction models highlighting glu-
cose, insulin, and BMI's correlations with diabetes and the Support
Vector Classifier’s potential (Miao 2021). Mousa et al. (2023) exam-
ined machine-learning models for diabetes diagnosis with LSTM
performing best in capturing temporal dependencies (Mousa et al.
2023).

The prediction of diabetes using various machine learning mod-
els has been a topic of extensive research yielding diverse levels of
accuracy and performance. Numerous algorithms have been used
in studies ranging from interpretable models like Naive Bayes and
random forest to deep learning strategies and ensemble frame-
works that combine several techniques. Even though research
shows notable improvements, the problem of class imbalance in
diabetes datasets continues to be a major barrier to predictive ac-
curacy. This study aims to address the problem of imbalanced
diabetes datasets by investigating six methodologies to enhance
classification performance through diverse preprocessing tech-
niques. We evaluate the effectiveness of these methodologies us-
ing multiple models including Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting, SVM, KNN, Naive Bayes, XG-
Boost, LightGBM, and CatBoost. The preprocessing techniques
explored include simple implementation, data standardization,
normalization, standardization with K-Fold cross-validation, and
two variations incorporating the SMOTE oversampling technique.
The models’ effectiveness is assessed based on accuracy, precision,
recall, and F1 scores. This study underscores the importance of
tailored preprocessing techniques in improving the classification
of imbalanced medical datasets, highlighting their potential to
enhance predictive accuracy in critical applications.
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Figure 1 Graphical abstract of the proposed method

METHODOLOGY AND MATERIAL

In our study, we employ a comprehensive methodology to address
the challenge of imbalanced datasets. Through detailed explo-
ration, we delve into various preprocessing techniques, validation
strategies, and data splitting methodologies to confront this is-
sue head-on. Our approach involves precise experimentation to
analyze the methods and differences between these approaches, re-
vealing their strengths and weaknesses. By examining the results,
we pointed out the most effective approach, one that not only
mitigates data imbalance effects but also maximizes predictive
performance. Our dedication to methodical exploration ensures
optimal results and a deeper understanding of the underlying
dynamics within our datasets.

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a crucial first step in the knowl-
edge discovery process, where data scientists use a series of analy-
sis operations (such as filtering, aggregating, and visualizing data)
to interactively explore unknown datasets (Milo and Somech 2020).
Before formal modeling, graphical representations, and visualiza-
tions, EDA seeks to conduct preliminary data investigations to find
patterns, evaluate presumptions, and test hypotheses. Explanatory
and comparative charts are a common feature of data visualiza-
tions, which help to clearly convey both concrete and abstract
concepts. When issues are identified and resolved, the accuracy
of diabetes diagnosis can be increased. Key aspects and hidden
trends in the data can be summarized to help detect difficulties (?).
Through Table 1, Figure 2, and Figure 3, some substantial insights
of the PIMA dataset were illustrated with understandable visuals.

Understanding and Visualizing Data

This dataset includes data from studies on diabetes among women
who identify as Pima Indian and who live in Phoenix, Arizona,
USA. The women in the dataset are 21 years of age and older. It has
eight different numeric variables and 768 entries (?). The selected
target variable classes are labeled as follows: 1 denotes a positive
diabetes test, while 0 denotes a negative test. The name of the
dataset, descriptions of the data types, and corresponding roles
are shown in Table 1. EDA clarified the dataset and showed that it
included 268 individuals with diabetes and 500 values of sample
patients who were not diabetic. This makes the imbalance in the
dataset its primary challenge. For reference, refer to Figure 3.
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Table 1 Dataset description

Main Criteria Data Type | Input/Target Notes
Outcome Categorical Target 0: No diabetes / 1: Diabetes
Pregnancies Numerical Input -
Glucose Numerical Input -
Blood Pressure Numerical Input -
Skin Thickness Numerical Input -
Insulin Numerical Input -
BMI Numerical Input -
Diabetes Pedigree Function | Numerical Input -
Age Numerical Input -
Table 2 Statistical summary of the dataset
Count | Mean Std Min | 25% | 50% 75% | Max
Pregnancies 768 3.845 3.37 0 1 3 6 17
Glucose 768 120.895 | 31.973 0 99 117 | 140.25 | 199
Blood Pressure 768 69.105 | 19.356 0 62 72 80 122
Skin Thickness 768 20.536 | 15.952 0 0 23 32 99
Insulin 768 79.799 | 115.244 0 0 30.5 | 127.25 | 846
BMI 768 31.993 7.884 0 27.3 32 36.6 67.1
Diabetes Pedigree Function 768 0.472 0.331 | 0.078 | 0.244 | 0.372 | 0.626 | 2.42
Age 768 33.241 11.76 21 24 29 41 81
Outcome 768 0.349 0.477 0 0 0 1 1

Pre-processing of the Data

Pre-processing is the primary prerequisite for working with
datasets. Firstly, outliers in the dataset are addressed using Z-score
calculation, where data points exceeding a specified threshold are
replaced with NaN values. Subsequently, missing values and zero
values in specific columns are handled. The only columns which
are excluded from the zero values checking are the “Pregnancies”
because it’s a true value that many women haven’t been pregnant
before, and the “Outcome” column because 0 there demonstrates
no diabetes diagnosis. Initially, missing values are identified and
replaced with the mean of their respective columns. Then zero
values in selected columns are replaced with the mean value as
well. Then the data was split into 2 splits: training with 80% of the
data and testing with 20%. Finally, a confirmation of the replace-
ments is provided. Cumulatively, these processes guarantee that
the dataset is free of outliers, NaNs, missing data, and zero values,
making it appropriate for activities involving machine learning.
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K-Fold Cross-Validation

To assess the generalization performance of the models, K-Fold
cross-validation is employed with a predefined number of folds
(k=5) (Murugan et al. 2023). This technique divides the dataset
into k subsets, with each subset serving as a testing set and the
remaining data as the training set. The procedure is repeated k
times, and the average performance metrics across all folds are
determined, assuring the models” durability and dependability
beyond the original train-test split (Sohil et al. 2013).

Imbalanced Dataset and Solution

Classifiers are designed to categorize objects based on their at-
tributes. However, in practical scenarios, datasets often exhibit
class imbalance, where certain classes have significantly fewer
instances compared to others. This class imbalance poses a chal-
lenge for traditional classification algorithms as they tend to be
less accurate in predicting minority classes. This phenomenon
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gree Function, Age]

Count of Elements in the Category Column

400

100

Category

Figure 3 Outcome column values distribution [classification
goal]

is known as the class imbalance problem. To address this issue,
various techniques have been proposed, including over and under-
sampling methods (Pradipta et al. 2021). Examples of that are
SMOTE (Synthetic minority oversampling approach), ADASYN
(Adaptive Synthetic Sampling Method), Borderline-SMOTE, and
Safe-Level SMOTE (Gosain and Sardana 2017). These techniques
aim to rebalance the dataset by adjusting the class distribution,
thereby enhancing the performance of classification algorithms
on imbalanced data (Pradipta ef al. 2021). To address the issue of
imbalanced dataset problem, the SMOTE technique was utilized.
SMOTE (Synthetic Minority Over-sampling Technique) intro-
duced by Chawla et al. in 2002 addresses class imbalance by gen-
erating synthetic samples in the minority class rather than simply
replicating existing samples, thus avoiding overfitting. To further
enhance accuracy and mitigate overfitting, the SMOTE algorithm
was refined. This method creates artificial minority instances along
the line segments connecting minority samples and their 'k’ near-
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est neighbors within the minority class. The 'k’ nearest neighbors
are randomly selected based on the desired oversampling rate.
However, a limitation of SMOTE is its tendency to oversimplify
the minority class space without considering the majority class,
potentially leading to increased overlap between classes (Gosain
and Sardana 2017).

Feature Scaling of the Dataset

MinMaxScaler and StandardScaler are both preprocessing tech-
niques commonly used in machine learning (D.K. et al. 2019). Min-
MaxScaler rescales features to a predetermined range, typically
between 0 and 1 (Powers 2020), whereas StandardScaler trans-
forms features to have a mean of 0 and a standard deviation of 1.
The primary distinction between them lies in their treatment of
outliers and the resulting shape of the distribution.MinMaxScaler
may distort data in the presence of outliers, whereas Standard-
Scaler exhibits less sensitivity to them (de Amorim et al. 2023). In
this study, both feature scalling tools were employed across vari-
ous experiments to assess their impact on model training and the
performance achieved when using normalized data.

Proposed Machine Learning Models

In this study, ten different machine learning models were em-
ployed to analyze the dataset and their outcomes were compared.
While ensemble models have shown promising performance in
prior research, this study explored and compared various ensem-
ble models beside conventional ones in the domain of machine
learning experimentation.

Logistic regression (LR) is a model that predicts the probability
of a binary outcome by assessing the odds of the event occurring
versus not occurring using predictor variables (y = 0 or 1). It em-
ploys the natural logarithm of these odds as a regression function.
Odds ratios quantify the impact of predictors on the outcome, with
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the exponential of the regression coefficients providing these ratios.
While logistic regression doesn’t have a straightforward formula
for estimation like linear regression, it involves iterative processes
to converge on the best estimates (LaValley 2008).

A Decision Tree is generated from a collection of labeled train-
ing examples, each described by a set of attribute values paired
with a class label. Given the expansive search options, decision-
tree learning generally follows a greedy, top-down, and recursive
approach commencing with the full training dataset and an un-
filled tree. It selects an attribute that optimally divides the training
data as the root split, subsequently segregating the data into dis-
tinct subsets based on the attribute’s values. This process repeats
recursively for each subset until all instances within a subset share
the same class label (Su 2024).

Random Forest is created by combining different tree predictors
so that every tree in the forest is dependent on the values of a
random vector that is randomly sampled and has the same distri-
bution for every tree. As the number of trees in a forest increases,
the generalization error converges a.s. to a limit. The strength
of each individual tree in the forest and the correlation between
them determine the generalization error of a forest of tree clas-
sifiers. Each node can be split using a random feature selection
process, which produces error rates that are more resilient to noise
but still compare favorably to Adaboost (Rigatti 2017). Internal
estimates track correlation, inaccuracy, and strength and are used
to illustrate how the number of features employed in the split-
ting changes. The importance of each variable is also determined
by internal estimations. These concepts also apply to regression
(Breiman 2001).

Support Vector Machines (SVM) is a powerful algorithm based
on Vapnik-Chervonenkis theory designed for supervised learning
classification problems. It aims to find the optimal separating
surface or hyperplane between two classes using kernel functions
and slack variables for noisy data. SVM maximizes margins, the
separation between the decision boundary and support vectors
to maximize confidence in predictions and generalization ability,
ensuring robustness and good generalization to new data (Bhavsar
and Panchal 2024).

K-Nearest Neighbor (KNN) is an algorithm that is a straight-
forward yet effective machine learning method utilized for both
classification and regression tasks. It operates by grouping data
into coherent clusters or subsets and classifying new input based
on its similarity to previously trained data. Essentially, the input
is assigned to the class with the most nearest neighbors. While
KNN is widely used due to its simplicity and effectiveness, it
also possesses several weaknesses. To address these shortcomings,
modified versions of the KNN algorithm have been developed
through prior research efforts. These variants aim to enhance effi-
ciency by mitigating the limitations of the original KNN approach
(Taunk et al. 2019).

The basis of the Naive Bayes classifier is a probabilistic ap-
proach. Under the presumption that the existence of one feature in
a class is unrelated to the existence of another feature in the same
class, it applies Bayes’ theorem. To estimate the probabilities of a
particular category, one uses the joint probabilities of terms and
categories. This independence assumption makes it possible to
study each term’s parameters separately, which speeds up calcu-
lation. A set of conditional probabilities and a structural model
make up the Bayesian network (Kumari et al. 2021).
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Gradient Boosting is a fundamental ensemble learning tech-
nique developed by Jerome H. Friedman in the late 1990s. It in-
volves iteratively improving predictive models by training weak
learners like decision trees to rectify errors from previous models.
By focusing on the residuals or gradients of the loss function from
the previous model, it reduces prediction errors and assembles an
ensemble of models each refining the previous model’s predictive
accuracy.

XGBoost, an evolution of Gradient Boosting, was developed
by Tianqi Chen in 2014 and quickly gained prominence for its
efficiency and scalability. Building upon the principles of Gradient
Boosting, XGBoost introduces advanced regularization techniques,
parallel and distributed computing capabilities, and a compre-
hensive set of hyperparameters. By optimizing the model’s ar-
chitecture and training process, XGBoost significantly enhances
performance while mitigating overfitting. Its versatility and ro-
bustness have made it a staple in data science competitions and
real-world applications alike (Chen and Guestrin 2016).

LightGBM, a cutting-edge gradient boosting framework,
emerged from the labs of Microsoft in 2016, engineered by Guolin
Ke et al. Unlike traditional approaches, LightGBM employs novel
tree-growing algorithms like Gradient-Based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB) to enhance speed
and efficiency. By prioritizing the most informative data points
during tree construction and leveraging histogram-based algo-
rithms, LightGBM achieves unparalleled performance on large-
scale datasets. With native support for categorical features and a
rich set of hyperparameters, LightGBM empowers users to build
high-quality models with minimal computational resources (Ke
et al. 2016).

CatBoost developed by Yandex researchers in 2017, CatBoost
revolutionizes gradient boosting with its intrinsic handling of cate-
gorical features. Created by Daniil Osokin and others, CatBoost
automates categorical data encoding, sparing users from tedious
preprocessing tasks. Employing advanced regularization tech-
niques like ordered boosting and dynamic tree level regularization,
CatBoost effectively combats overfitting while preserving predic-
tive accuracy. Furthermore, its GPU-accelerated training and built-
in visualization tools make it a formidable choice for practitioners
seeking both performance and interpretability in their models
(Prokhorenkova et al. 2019).

Evaluation Metrics To assess the models, we employed various
metrics commonly used in machine learning evaluations such as
the confusion matrix and its derived metrics: Accuracy, Precision,
Recall, and F1 Score (Arias-Duart ef al. 2023). Additionally, the
ROC graph was displayed alongside the confusion matrix (Salih
and Abdulazeez 2021).

RESULTS AND DISCUSSION

In the study, the methodology tackles the challenge of dealing with
imbalanced datasets head-on. Various preprocessing techniques,
validation strategies, and data splitting methodologies have been
implemented to address this issue comprehensively. Through rig-
orous experimentation, we’ve meticulously examined the nuances
and disparities between these methods, meticulously dissecting
both their strengths and weaknesses.

By scrutinizing the results meticulously, we’ve identified the
most effective approach, one that not only mitigates the effects of
data imbalance but also maximizes predictive performance. Our
dedication to methodical exploration ensures that we not only
achieve optimal results but also gain a deeper understanding of
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Table 3 Evaluation Metrics Definition, Formulas, and Ideal Values

Metric Formula

Definition

Ideal Situation

Confusion Matrix Table of [TP, TN, FP, FN]

— TP4+TN
Accuracy TP+TN+FP+FN

TP

Precision TPTEP

TP
Recall TP+EN

Precision x Recall
Precision+Recall

F1 Score 2 x

ROC Graph of True Positive and
False Positive rates (Raschka

2014).

An error matrix is another
name for a confusion matrix. It
facilitates our analysis of each
categorization model’s perfor-
mance. It provides a clear pic-
ture of the efficiency of your
classification method (Duvva
2024).

Proportion of correct predic-
tions out of total predictions
(Luque et al. 2019).

Proportion of true positive pre-
dictions out of all positive pre-
dictions made by the model
(Luque et al. 2019).

Proportion of true positive pre-
dictions out of all actual (Luque
et al. 2019).

Harmonic mean of precision
and recall balances both metrics
(Luque et al. 2019).

Helpful resources for choosing
categorization models accord-
ing to how well they perform
in terms of True Positive and

The ideal confusion matrix has

values only along the diagonal

(Duvva 2024).

1.0

1.0

1.0

1.0

A perfect classifier would have
a True Positive Rate of 1 and a
False Positive Rate of 0 placing
it in the upper left corner of the

False Positive rates. Random
guessing is represented by the
diagonal of a ROC graph and
classification models that lie be-
low the diagonal are thought to
be less accurate than random
guessing (Raschka 2014).

graph.

the underlying dynamics within our datasets.

The findings of the study present six distinct methodologies for
handling our preserved dataset. In this section, the performance
of various machine learning classifiers under different preprocess-
ing techniques is presented and analyzed: Simple Implementa-
tion, Data Standardization, Data Normalization, Standardization
With K-Fold, and Standardization With K-Fold and SMOTE. The
study presents six distinct methodologies for handling a preserved
dataset focusing on the performance of various machine learning
classifiers under different preprocessing techniques. Simple imple-
mentation without standardization showed varied performance
across classifiers with Support Vector Machine (SVM) exhibiting
the highest accuracy.

Applying standardization to the data resulted in consistent im-
provements across classifiers, particularly benefiting Logistic Re-
gression, Random Forest, and LightGBM. Normalization yielded
mixed results with Logistic Regression showing the highest ac-
curacy. Standardization with K-Fold validation provided robust
estimates of model performance. Logistic Regression consistently
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emerged as the top performer across all preprocessing methods.
Further exploration included Standardization with K-Fold and
SMOTE, which notably improved model performance, particularly
for Random Forest and SVM.

An alternative approach involving standardization, SMOTE
oversampling, and K-Fold cross-validation showcased significant
improvements in various classifiers, with CatBoost exhibiting im-
pressive results. Comparing all methodologies revealed varying
degrees of success, with the combined use of standardization, K-
Fold cross-validation, and SMOTE proving effective. Random For-
est and SVM consistently performed well across different method-
ologies. The findings offer valuable insights in addressing data
preprocessing and class imbalance challenges in machine learn-
ing tasks, emphasizing the importance of careful experimentation
and customization based on dataset characteristics and problem
requirements.
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Table 4 Evaluation metric results for each trained model across the six applied methodologies

Normalization of Data

Classifier Acc Prec Rec F1
Logistic Regression 77.27% 70.83% 57.62% 66.02%
Decision Tree 72.43% 61.21% 67.19% 64.05%
Random Forest 75.99% 66.57% 65.43% 66.00%
Gradient Boosting 75.32% 63.93% 70.91% 67.24%
SVM 72.76% 61.20% 67.45% 64.18%
KNN 71.68% 59.96% 71.24% 64.95%
Naive Bayes 74.68% 62.50% 72.73% 67.23%
XGBoost 71.43% 58.79% 77.27% 66.21%
LightGBM 72.08% 59.09% 70.91% 64.46%
CatBoost 74.03% 63.16% 65.45% 64.29%
Standardization With K Fold
Classifier Acc Prec Rec F1
Logistic Regression 72.44% 72.77% 57.62% 64.13%
Decision Tree 76.89% 69.35% 60.74% 64.80%
Random Forest 76.09% 68.91% 60.74% 64.13%
Gradient Boosting 76.30% 69.05% 61.16% 64.86%
SVM 72.21% 61.96% 68.60% 65.05%
KNN 72.16% 63.64% 71.24% 67.22%
Naive Bayes 75.13% 64.95% 63.64% 63.81%
XGBoost 73.18% 61.14% 68.75% 63.95%
LightGBM 74.38% 65.34% 65.91% 63.59%
CatBoost 76.43% 69.08% 59.87% 63.80%
Standardization, K Fold and SMOTE Implementation
Classifier Acc Prec Rec F1
Logistic Regression 75.66% 61.57% 70.91% 67.03%
Decision Tree 62.82% 54.29% 61.22% 57.03%
Random Forest 77.60% 66.44% 66.45% 65.69%
Gradient Boosting 74.87% 62.28% 72.16% 66.76%
SVM 76.69% 68.94% 71.43% 69.77%
KNN 71.95% 63.76% 71.24% 67.27%
Naive Bayes 74.38% 61.60% 75.00% 67.39%
XGBoost 74.50% 61.89% 68.45% 64.69%
LightGBM 75.49% 61.43% 68.30% 65.70%
CatBoost 76.43% 64.53% 73.30% 68.45%
Standardization, K FOLD and SMOTE Implementation (Variation)

Classifier Acc Prec Rec F1
Logistic Regression 77.34% 63.46% 74.63% 69.69%
Decision Tree 78.39% 63.95% 74.30% 74.30%
Random Forest 80.10% 100.00% 100.00% 100.00%
Gradient Boosting 89.19% 70.73% 90.67% 85.41%
SVM 82.53% 70.94% 74.70% 77.21%
KNN 100.00% 100.00% 100.00% 100.00%
Naive Bayes 74.74% 69.09% 70.91% 66.00%
XGBoost 100.00% 100.00% 100.00% 100.00%
LightGBM 100.00% 100.00% 100.00% 100.00%
CatBoost 95.18% 91.10% 95.52% 93.26%
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Receiver Operating Characteristic (ROC) Curve
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Figure 4 The confusion matrix and ROC curve illustrate the performance of the top-performing model (CatBoost) following the imple-

mentation of Standardization with K-Fold and SMOTE techniques.

Table 5 Classification performance of other classifiers in the literature

(Rajni & Amandeep, 2019) (Rajni and

Amandeep 2019)
Bhoi et al. (2021) (Bhoi et al. 2021)
(AB),LR
Patra & Khuntia (2021) (Patra and Khuntia
2021) (SDKNN) classifier
(Miao, 2021) (Miao 2021) SVM
(Mousa et al., 2023) (Mousa et al. 2023) LSTM, RF, CNN

Reference Models Best Performance
(Chang et al., 2022) (Chang et al. 2023) NB, RF, and J48 DT Fl-score: 85.17%
(Naz & Ahuja, 2020) (Naz and Ahuja 2020) | ANN, NB, DT, and DL Accuracy: 98.07%

SVM, NB, KNN, and RB-Bayes framework

CT, SVM, k-NN, NB, RE, NN, AdaBoost

Standard Deviation K Nearest Neighbor

Accuracy: 72.9%

Fl-score: 76%

Accuracy: 83.2%

Accuracy: 87.01%

Accuracy: 85%

This study LR, DT, RE, GB, SVM, KNN, NB, XGBoost, | Accuracy: 94.27%, Precision: 89.16%, Re-
LightGBM, CatBoost call: 95.15%, and F1 score: 92.06%
CONCLUSION Notably, CatBoost emerges as a proficient tool in handling im-

In conclusion, this article addressed the common challenge of im-
balanced datasets, particularly in the context of classifying medical
conditions such as diabetes. It investigated six distinct method-
ologies aimed at addressing the challenges posed by imbalanced
datasets with a specific focus on classifying imbalanced diabetes
datasets. The primary objective is to mitigate these challenges
through customized preprocessing techniques. Through compre-
hensive evaluation using various classifiers and performance met-
rics such as accuracy, precision, recall, and F1 scores, it is evident
that standardization, particularly when integrated with K-Fold
cross-validation, consistently enhances model performance across
classifiers. Moreover, the integration of the SMOTE oversampling
technique significantly boosts model performance, particularly
noted in Gradient Boosting and SVM classifiers.
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balanced datasets, demonstrating impressive accuracy, precision,
recall, and F1 scores adapted to the applied preprocessing tech-
niques. These findings underscore the importance of customized
preprocessing techniques in effectively addressing the challenges
posed by imbalanced datasets, particularly in the context of di-
abetes classification, delving into the complexities of handling
such datasets and highlighting the significance of employing ap-
propriate preprocessing strategies to improve the classification
of imbalanced medical datasets, thereby augmenting predictive
accuracy in critical healthcare applications. Finally, among the
models tested, CatBoost demonstrated exceptional performance
in handling imbalanced datasets, achieving an accuracy of 95.18%,
precision of 91.10%, recall of 95.52%, and an F1 score of 93.26%.
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