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Computational Efficiency and Accuracy of Deep
Learning Models for Automated Breast Cancer
Detection in Ultrasound Imaging
Luaay Alswilem ID ∗,1 and Nurettin Pacal ID α,2

∗Department of Computer Engineering, Faculty of Engineering, Igdir University, 76000, Igdir, Türkiye, αDepartment of Biology, Faculty of Arts and Sciences,
Igdir University, 76000, Igdir, Türkiye.

ABSTRACT This study explores the trade-off between diagnostic performance and computational efficiency in deep learning models
for the classification of breast cancer in ultrasound images. To this end, we evaluate three contemporary CNN architectures EfficientNetB7,
EfficientNetV2-Small, and RexNet-200 in a multiple comparative study with standardized performance and complexity metrics. Our
evaluations provide evidence that all three models achieved an identical high accuracy of 95.00%, but there were sizeable differences in
the computational resources required to achieve that accuracy. RexNet-200 demonstrated tremendous computational efficiency, achieving
identical performance with the least amount of resources (13.81M parameters; 3.05 GFLOPs) required compared to EfficientNetB7 which
is much more computationally intensive. An examination of the confusion matrix for the models enhances the models clinical validity, as
there are no malignant lesions misclassified as normal. Ultimately, our study clearly demonstrates that diagnostic accuracy is not a good
metric for practical clinical deployment. RexNet-200, by representing high performance, with minimal resource utilization, is the most
pragmatic and clinically applicable model, creating the opportunity to develop scalable and accessible CAD systems in resource-limited
settings.
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INTRODUCTION

Breast cancer represents one of the most prevalent malignancies
among women globally, characterized by the uncontrolled prolif-
eration of epithelial cells within the breast tissue (Kim et al. 2025;
Xiong et al. 2025). The etiology of the disease is rooted in a complex
interplay of genetic predisposition with hormonal, environmental,
and lifestyle factors (Obeagu and Obeagu 2024). As early detection
significantly enhances treatment success and survival rates, the
development of effective screening and diagnostic methodologies
is of paramount importance. In this context, non-invasive medi-
cal imaging modalities assume a fundamental role in identifying
pathological changes within the tissue (Kiani et al. 2025; Alshawwa
et al. 2024; Begum et al. 2024). Although mammography is the
cornerstone of standard screening, its diagnostic efficacy can be
diminished, particularly in women with dense breast tissue, under-
scoring the need for supplementary imaging techniques (Katsika
et al. 2024; Trentham-Dietz et al. 2024; Abeelh and AbuAbeileh
2024).

Owing to advantages such as its non-ionizing nature,
widespread accessibility, and cost-effectiveness, ultrasonography
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is regarded as a valuable instrument for evaluating breast lesions
(Iacob et al. 2024). It provides distinct benefits in clarifying suspi-
cious mammographic findings, differentiating between cystic and
solid masses, and guiding biopsy procedures, enhancing the char-
acterization of lesions in women with dense parenchyma (Gordon
et al. 2025). Nevertheless, its utility is constrained by certain limi-
tations, including operator dependency, inter-observer variability
in interpretation, and an inadequate capacity to detect microcalci-
fications. These challenges necessitate the development of more
objective and standardized methodologies for the interpretation of
ultrasound images (Vogel-Minea et al. 2025; Rana et al. 2024).

Recently, artificial intelligence (AI), and specifically deep learn-
ing (DL) techniques, have prompted a paradigm shift in the analy-
sis of medical images (Karaman et al. 2023; Pacal et al. 2025; Pacal
and Attallah 2025a; Zeynalov et al. 2025). Architectures such as
Convolutional Neural Networks (CNNs) are delivering ground-
breaking results in fields like radiology and pathology, attributed
to their capacity to autonomously extract hierarchical features
from large-scale datasets (Pacal 2024; Ozdemir et al. 2025; Lub-
bad et al. 2024b). In the context of breast cancer, DL models have
demonstrated high success rates in the detection, classification,
and segmentation of lesions across various imaging modalities,
including mammography, ultrasound, and MRI (Pacal and Kılı-
carslan 2023; COŞKUN et al. 2023; İnce et al. 2025; Lubbad et al.
2024a).
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The present study aims to enhance the effectiveness and accu-
racy of early breast cancer diagnosis through DL-based analysis of
ultrasound images (Pacal and Attallah 2025b; Cakmak et al. 2024;
Kurtulus et al. 2024; Bayram et al. 2025; Pacal 2025). Accordingly,
a comparative performance evaluation is conducted by training
three modern CNN architectures EfficientNetB7, EfficientNetv2-
Small, and RexNet-200 on a publicly available breast ultrasound
dataset. The ultimate objective of this research is to identify the
architecture that offers the highest efficiency and performance for
this specific diagnostic task (Pacal 2022; Cakmak and Pacal 2025).

The field of medicine is undergoing a profound transforma-
tion through the integration of artificial intelligence (AI) and its
sub-disciplines, machine learning (ML) and deep learning (DL)
(Obuchowicz et al. 2024; Koçak et al. 2025). These technologies
present groundbreaking opportunities across a broad spectrum,
from the early diagnosis of diseases to the personalization of treat-
ment protocols and from drug discovery to the decryption of com-
plex biological data (Li et al. 2024; Islam et al. 2024). The domain
of medical imaging, in particular, holds significant potential due
to the capacity of AI algorithms to detect subtle patterns beyond
human perception and to rapidly analyze vast volumes of data
(Chambi et al. 2025; Meng et al. 2024). Disciplines such as radiology,
pathology, and oncology are swiftly adopting AI-powered systems
for their potential to enhance diagnostic accuracy and improve pa-
tient outcomes. In the management of prevalent health issues like
breast cancer, the fusion of AI with accessible imaging modalities
such as ultrasound (US) opens new horizons for advancing early
detection capabilities (Rajkumar et al. 2024).

Current research in the literature is focused on both develop-
ing integrated clinical decision support systems for breast cancer
diagnosis and enhancing model performance through hybrid ap-
proaches. For instance, Gagliardi et al. proposed a holistic system
that provides radiologists with both a segmentation mask and a
classification result, reporting clinically valuable outcomes on the
BUSI dataset with over 90% accuracy, 92% precision, and 90% re-
call (Gagliardi et al. 2024). In a different approach, Abhisheka et al.
achieved an accuracy of 89.02% and an AUC of 0.8717 with a hy-
brid model (HBCPS) that combines deep learning (ResNet50) and
handcrafted (HOG) features, using an SVM as the classifier (Ab-
hisheka et al. 2025). Along similar lines, Latha et al. leveraged an
EfficientNet-B7 architecture augmented with advanced data aug-
mentation and interpretability (XAI) techniques like Grad-CAM,
attaining a superior classification accuracy of 99.14%, particularly
in recognizing minority classes (Latha et al. 2024).

Other lines of investigation are directed towards exploring
segmentation performance, computational efficiency, and the po-
tential offered by next-generation architectures like Mamba. In
this context, Umer et al. focused on the segmentation task with
a U-shaped autoencoder featuring a multi-attention mechanism,
achieving high Dice scores of 90.45% and 89.13% on the UDIAT
and BUSI datasets, respectively (Umer et al. 2024). With the objec-
tive of reducing computational cost, Cai et al. developed SC-Unext,
a lightweight architecture, demonstrating the importance of model
efficiency with 97.09% accuracy and a 75.29% Dice score (Cai et al.
2024). Finally, Sarvi et al. revealed that Mamba-based architectures
can deliver significant performance gains over traditional CNNs
and Transformers up to a 1.98% increase in AUC and 5.0% in accu-
racy by better capturing long-range dependencies in limited data
scenarios (Nasiri-Sarvi et al. 2024). These collective efforts indicate
that the field is in a state of continuous evolution towards more
accurate, efficient, and innovative models.

MATERIALS AND METHODS

Dataset
For this study, we utilized the publicly available dataset "Breast
Ultrasound Images Dataset" provided by sabahesaraki on Kaggle,
for classifying breast ultrasound (US) images (Kaggle 2025). This
dataset contains pathologically proven breast lesions with three
basic classes of benign, malignant, and normal breast tissue. The
heterogenous dataset serves as a valuable resource to evaluate
deep learning models’ ability to differentiate tissues with different
morphologies and lesion types.

To ensure standardization and reproducibility in the model de-
velopment and evaluation phases, the collection of 780 images (437
benign, 210 malignant, 133 normal) was methodically partitioned
into training, validation, and testing subsets. This division allo-
cated 70% of the collection (545 images) for model training, 15%
(115 images) for the validation process, and the remaining 15%
(120 images) for the test phase to impartially assess final model
performance. This strategic partitioning aims to facilitate model
training on sufficient data while reliably measuring generalization
capabilities and mitigating the risk of overfitting. Furthermore,
potential model bias towards any specific class was addressed by
ensuring that the class distribution within each subset mirrored
the proportions of the original dataset. Accordingly, the training,
validation, and test sets were structured to contain (305B, 147M,
93N), (65B, 31M, 19N), and (67B, 32M, 21N) samples, respectively.
A schematic of this dataset partitioning is also visualized in Figure
1.

Figure 1 The Breast Ultrasound Images dataset was divided into
three subsets: 70% for training, 15% for validation, and 15% for
testing.

To elucidate the composition of the dataset and the visual dis-
tinctions among its classes, representative ultrasound images for
each category (benign, malignant, and normal) are presented in
Figure 2. Upon examination, benign lesions typically exhibit well-
defined contours and a homogeneous internal structure. In con-
trast, malignant lesions often display morphological characteristics
such as irregular borders, spiculated margins, and a heterogeneous
internal echo pattern. Normal breast tissue, for its part, reflects
characteristic fibroglandular and adipose tissue patterns. These ex-
amples not only highlight the morphological differences between
the classes but also expose the inherent challenges associated with
ultrasound imaging, such as speckle noise and low contrast. This
visual presentation provides a valuable context for understand-
ing the key distinguishing features that the models must learn to
identify, and for appreciating the diversity encapsulated within
the dataset.
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Figure 2 Sample ultrasound images from the dataset belonging to
the benign, malignant, and normal classes.

Data Augmentation

To enhance the generalization performance of the deep learning
models and mitigate the risk of overfitting a prevalent challenge in
limited datasets typical of medical imaging this study incorporated
a suite of on-the-fly data augmentation techniques into the training
pipeline. As the focus of the task was on classification, the seg-
mentation masks (mask.png) included in the original dataset were
excluded from the analysis. The primary augmentation strategies
applied to each image during the training loop included the fol-
lowing: images were first subjected to a "Random Resized Crop,"
where they were randomly cropped to a scale of 8% to 100% of
the original area with an aspect ratio between 0.75 and 1.33, and
subsequently resized to 224x224 pixels using a random interpola-
tion method. Additionally, a random horizontal flip was applied
with a 50% probability. To introduce color diversity, "Color Jitter"
was employed, randomly altering the brightness, contrast, and
saturation of the images by a factor of 0.4. Vertical flipping was not
utilized in this work. This on-the-fly augmentation methodology
ensures that the model encounters diverse variations of the data
in each training epoch. This approach is designed to prevent the
model from becoming overly dependent on the specific artifacts
of the training set, thereby fostering a more robust and reliable
performance on unseen data (Wang et al. 2024; Mumuni et al. 2024).

The Used Algorithms

In this research, we use deep Convolutional Neural Network
(CNN) architectures, which have been shown to be effective in
the computer vision research literature, to automatically classify
breast ultrasound (US) images. In fields like medical imaging
where there tends to be a small amount of labelled data, the ad-
vantage of transfer learning - as opposed to training a model from
scratch - is considerable. By using transfer learning in particular
fields, it is possible to leverage the feature extraction ability of
models pre-trained on large data sets like ImageNet, and then chal-
lenge those features in a smaller and more specific target dataset.
The use of a transfer learning approach is also intended to facilitate
quicker convergence, better generalization, and a reduced chance
of overfitting. For our project, all the CNN architectures we used
were loaded with pre-trained weights from a model trained on
ImageNet, and then we fine-tuned the models on our target breast
ultrasound dataset.

The first set of architectures considered includes the Efficient-
Net family. EfficientNet families of architectures changed how
researchers think about model scaling. Tan and Le proposed these

architectures that scale model dimensions (Depth, Width, and Reso-
lution) in a systematic way using what they call ’compound scaling’
rather than just scaling in a random way. This principle allows for
higher efficiency and accuracy using fewer parameters. Efficient-
NetB7, being a large and performant member of the family and the
largest and most performant of the versions (that was scaled in this
compound fashion) stands as a baseline for image classification
tasks. The second architecture considered, EfficientNetV2-S, is a
next-generation architecture that builds on the first and offers both
faster training and a more efficient parameter.zip. It uses both
MBConv and Fused-MBConv blocks and improved its training
strategy to optimally achieve a good balance of speed and accuracy,
especially for the S (Small) version (Tan and Le 2019, 2021).

RexNet-200, another modern architecture that we evaluated,
was created for addressing the ’representational bottleneck’ prob-
lem raised by standard designs. Rank eXpansion Networks
(RexNets), as introduced by Han et al., are based on the idea that in
standard convolutional blocks, channel narrowing-and-widening
operations can lose information. RexNets work around this issue
by providing blocks for networks to preserve and build the ’rank’
of inter-layer channel representations, or the amount of unique in-
formation. This construction can facilitate a fuller and more varied
flow of features between the layers, and thus increase the model’s
representational capabilities. RexNet-200, which we used in the
study, is a higher-performing type of this architecture (with a 2.0
scaling factor) (Han et al. 2021).

Three distinct and contemporary CNN architectures Efficient-
NetB7, EfficientNetV2-S, and RexNet-200 were chosen to compare
their respective performance in classifying breast ultrasound im-
age classes as benign, malignant, and normal. Each model has its
own design philosophies and contributions, including compound
scaling, training optimization, and overcoming representational
bottlenecks, which provides a broad view of the variability in CNN
approaches to this complex medical classification task. The models
are evaluated using comprehensive metrics to derive meaningful
conclusions regarding the most suitable architecture for this task.

Performance Metrics

Measuring the performance of deep learning models is a critical
step for assessing the practical value of these models, justifying
methodological choices, and allowing data-driven choices. Relying
on performance measures can have different purposes, such as
evaluating the effectiveness of a model, guiding the optimization
process, guarding against data errors or biases, allowing for an ob-
jective comparison between models, and identifying phenomena
such as overfitting. The current paper adopts conventional eval-
uation criteria that are established and accepted in the academic
literature that is specific to the issue of breast cancer classification.

The primary metrics employed within this project accuracy, pre-
cision, recall, and F1-score are indicators of central importance not
only in deep learning evaluations but also in other disciplines. Ac-
curacy, which offers an initial impression of general performance,
is the ratio of correct predictions to the total number of instances.
Precision, which measures the exactness of positive predictions,
reflects the reliability of the model’s positive labeling; high pre-
cision implies a low false positive rate. Recall, which measures
the model’s ability to identify all actual positive cases, indicates
its success in detecting events that should not be missed. The
F1-score, which combines these two metrics into a single measure,
is the harmonic mean of precision and recall, serving as a balanced
performance criterion that reflects the trade-off between false posi-
tives and false negatives. Conceptually, these definitions may also
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be formulated through the mathematical expressions presented
below.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

RESULTS AND DISCUSSION

The comparative analysis, as detailed in Table 1, reveals that the
three evaluated architectures each achieved an identical accuracy
of 95.00% in classifying breast ultrasound images. Behind this
uniform accuracy score, however, lie significant divergences in
other performance and complexity metrics. While EfficientNetV2-
Small led in precision at 94.89%, EfficientNetB7 yielded the best
results for recall and F1-score, at 95.38% and 94.41%, respectively.
A striking paradox emerges when these performance data are con-
sidered alongside the computational costs of the models: Efficient-
NetB7, despite possessing some of the highest metrics, is the most
resource-intensive model with 63.79 million parameters and 10.26
GFLOPs. In contrast, RexNet-200 attains the same high accuracy
with only 13.81 million parameters and 3.05 GFLOPs, proving to be
a remarkably efficient alternative that requires approximately 4.6
times fewer parameters and 3.4 times less computational power.

■ Table 1 A Comparison of Performance and Complexity in
CNN Models for Classifying Breast Ultrasound Images

Model Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs

EfficientNetB7 95.00 93.58 95.38 94.41 63.79 10.26

EfficientNetV2-Small 95.00 94.89 93.75 94.28 20.18 5.42

RexNet-200 95.00 93.38 93.75 93.54 13.81 3.05

These findings demonstrate that for the evaluation of modern
deep learning architectures, computational efficiency is a critical
factor alongside diagnostic accuracy. RexNet-200, by achieving
high accuracy with minimal resources, emerges as the most practi-
cal and convenient solution for Computer-Aided Diagnosis (CAD)
systems intended for deployment in resource-constrained clinical
environments or on local devices. With its high precision and bal-
anced efficiency, EfficientNetV2-Small presents a strong option for
scenarios where minimizing false positives is vital. On the other
hand, despite its highest recall rate, the heavy computational bur-
den of EfficientNetB7 significantly limits its scalability and practi-
cality for real-world applications. This work clearly establishes the
potential of efficient and lightweight architectures like RexNet-200
to enable the development of sustainable and accessible systems
for the early diagnosis of breast cancer, without compromising on
accuracy compared to their larger, more complex counterparts.

A detailed breakdown of the classification performance for the
RexNet-200 model is provided in the confusion matrix presented in
Figure 3. The concentration of values along the matrix’s diagonal
axis is an indicator of the model’s success; it correctly classified a
total of 116 samples (64 Benign, 31 Malignant, and 21 Normal). An

analysis of the errors reveals that 2 Benign cases were misclassified
as Malignant, and 1 Malignant case was misclassified as Benign. A
particularly noteworthy finding that reinforces the model’s clinical
reliability is that no errors were made in the ’Normal’ class, and
crucially, no ’Malignant’ case was overlooked as ’Normal’ the most
critical error scenario. This error profile corroborates the robust
performance underlying the model’s high accuracy rate.

Figure 3 RexNet-200 model confusion matrix for breast
ultrasound classification.

CONCLUSION

This study, by comparing three distinct deep learning models for
the classification of breast ultrasound images, has demonstrated
that computational efficiency is a decisive differentiating factor,
even amidst an identical accuracy rate of 95.00%. The results be-
ginning to clearly outline RexNet-200, a model that can know the
diagnostic performance equivalent to a more complex architec-
ture such as EfficientNetB7 according to leading metrics, but that
comes with far less resource usage. Specifically, there is clearly
a large resource-use advantage to the design of this architecture;
the model operated with roughly 4.6 times fewer parameters than
EfficientNetB7 and 3.4 times lower computational demands on the
host system. More importantly, RexNet-200 was confirmed to be
clinically robust based on the confusion matrix analysis, especially
in terms of not misclassifying diagnoses of malignant as normal.

Thus, at minimum, this study provides evidence suggesting
that simply pursuing the highest accuracy metric is not effective for
the development of any future modern Computer-Aided Diagno-
sis (CAD) systems. However, one fundamental change is to move
to architectures that maximize the trade-off between diagnostics ac-
curacy and efficiency. Because of the success of RexNet-200 and the
rest of our study, it is evident that it is possible to develop a system
for the early diagnosis of breast cancer that is high-performance,
scalable, sustainable, and can be used in settings where hardware
resources are limited. There are several reasons why an efficient
CAD model is best for the real world.

Ethical standard
The authors have no relevant financial or non-financial interests to
disclose.

Availability of data and material
The data that support the findings of this study are available from
the corresponding author upon reasonable request.

4 | Alswilem and Pacal Artificial Intelligence in Applied Sciences



Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

LITERATURE CITED

Abeelh, E. A. and Z. AbuAbeileh, 2024 Comparative effectiveness
of mammography, ultrasound, and mri in the detection of breast
carcinoma in dense breast tissue: a systematic review. Cureus
16.

Abhisheka, B., S. K. Biswas, B. Purkayastha, and S. Das, 2025 In-
tegrating deep and handcrafted features for enhanced decision-
making assistance in breast cancer diagnosis on ultrasound im-
ages. Multimedia Tools and Applications pp. 1–23.

Alshawwa, I. A., H. Q. El-Mashharawi, F. M. Salman, M. N. A.
Al-Qumboz, B. S. Abunasser, et al., 2024 Advancements in early
detection of breast cancer: Innovations and future directions .

Bayram, B., I. Kunduracioglu, S. Ince, and I. Pacal, 2025 A sys-
tematic review of deep learning in mri-based cerebral vascular
occlusion-based brain diseases. Neuroscience .

Begum, M. M. M., R. Gupta, B. Sunny, and Z. L. Lutfor, 2024 Ad-
vancements in early detection and targeted therapies for breast
cancer; a comprehensive analysis. Asia Pacific Journal of Cancer
Research 1: 4–13.

Cai, F., J. Wen, F. He, Y. Xia, W. Xu, et al., 2024 Sc-unext: A
lightweight image segmentation model with cellular mecha-
nism for breast ultrasound tumor diagnosis. Journal of Imaging
Informatics in Medicine 37: 1505–1515.

Cakmak, Y. and I. Pacal, 2025 Enhancing breast cancer diagnosis:
A comparative evaluation of machine learning algorithms using
the wisconsin dataset. Journal of Operations Intelligence 3: 175–
196.

Cakmak, Y., S. Safak, M. A. Bayram, and I. Pacal, 2024 Compre-
hensive evaluation of machine learning and ann models for
breast cancer detection. Computer and Decision Making: An
International Journal 1: 84–102.

Chambi, E. A., D. G. Alzamora, and A. A. Salas, 2025 Ultrasonic
image processing for the classification of benign and malignant
breast tumors: Comparative study of convolutional neural net-
work architectures. Engineering Proceedings 83: 15.
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BANTOĞLU, et al., 2023 A comparative study of yolo models
and a transformer-based yolov5 model for mass detection in
mammograms. Turkish Journal of Electrical Engineering and
Computer Sciences 31: 1294–1313.

Gagliardi, M., T. Ruga, E. Vocaturo, and E. Zumpano, 2024 Predic-
tive analysis for early detection of breast cancer through artifi-
cial intelligence algorithms. In International Conference on Innova-
tions in Computational Intelligence and Computer Vision, pp. 53–70,
Springer.

Gordon, P. B., L. J. Warren, and J. M. Seely, 2025 Cancers detected
on supplemental breast ultrasound in women with dense breasts:
update from a canadian centre. Canadian Association of Radiol-
ogists Journal p. 08465371251318578.

Han, D., S. Yun, B. Heo, and Y. Yoo, 2021 Rethinking channel dimen-
sions for efficient model design. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition, pp. 732–741.

Iacob, R., E. R. Iacob, E. R. Stoicescu, D. M. Ghenciu, D. M. Cocolea,
et al., 2024 Evaluating the role of breast ultrasound in early
detection of breast cancer in low-and middle-income countries:
a comprehensive narrative review. Bioengineering 11: 262.
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ABSTRACT This study examines the use of machine learning and artificial intelligence algorithms to predict
individuals’ annual incomes. In analyses conducted using the Python programming language, the best
performance was achieved in models utilizing the "Synthetic Minority Over-sampling Technique (SMOTE)" for
imbalanced data sets, with an accuracy of 87.45%, precision of 85.74%, recall of 89.31%, and an F1 score of
87.30, using the "Light Gradient Boosting Machines" algorithm. Additionally, the impact of parameters and
variables on income prediction was examined using interpretable artificial intelligence algorithms. The results
of the study emphasize the importance of employing effective methods and explaining machine learning model
predictions, as well as addressing imbalanced data sets.

KEYWORDS

Revenue predic-
tion
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INTRODUCTION

The estimation of individuals’ incomes is crucial for financial plan-
ning and resource management. This study aims to explore prac-
tical applications of machine learning and artificial intelligence
algorithms to predict individuals’ annual incomes. The research
seeks to develop income prediction models and achieve more ac-
curate estimations. Several studies focus on estimating individual
income levels using various approaches. One study employed
a machine learning approach to predict individual income and
highlighted the issue of individuals misreporting their earnings
(Matkowski 2021). Another study explored individual-level in-
come prediction using Facebook profiles, examining the density
distributions of annual income and comparing them with U.S. Cen-
sus data (Matz et al. 2019). Additionally, the UCI Adult Dataset, a
common resource for predicting annual income levels in the U.S.,
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has been used to classify whether a person’s income exceeds a
certain threshold. This dataset has been applied to predict whether
an individual’s annual income surpasses $50,000 based on demo-
graphic data (Becker and Kohavi 2023).

An analysis was conducted on subjective expectations about
future income changes using household panel data. This study
found that income changes strongly depended on past changes.
It also observed that expected income changes were significantly
influenced by factors such as employment status, family structure,
permanent income, and past expectations. The study concluded
that expectations were not rational, particularly noting that house-
holds with decreasing past incomes underestimated future income
growth (Das and Van Soest 1999). Another research examined
weekly earnings expectations reported in subjective probabilities
by participants in a national household survey during the spring
of 1994. This study assessed the potential of obtaining expecta-
tions in future surveys, suggesting that such data could be more
informative than typical economic expectations reports.

It also analyzed revisions in expectations and the relationship
between expectations and actual earnings, providing positive find-
ings on the validity of the data (Dominitz 1998). One study investi-
gated the use of principal component analysis and support vector
machines to create and evaluate income prediction data based on
the U.S. Census Bureau’s Current Population Survey. This research
demonstrated the effectiveness of detailed statistical studies for rel-
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evant feature selection and their impact on improving classification
accuracy. It also emphasized that shaping computational methods
around specific real datasets is a critical factor in enhancing the
power of algorithms (Lazar 2004).

MATERIALS AND METHODS

Dataset

In this study, the dataset was examined across 14 parameters (vari-
ables or features) (Becker and Kohavi 2023). Initially containing
48,842 observations, the dataset was reduced to 45,223 observa-
tions by removing those with missing information. The dataset
was organized to serve as a suitable input for all machine learning
algorithms used in the study. As part of this organization, a proper
format conversion was applied to parameters that did not have
numerical values.

■ Table 1 Parameters and Data Types of the Dataset Used

Parameter Data Type

Age Integer

Work class Categorical

Education Level Categorical

Marital Status Categorical

Occupation Categorical

Relationship Categorical

Race/Ethnicity Categorical

Gender Categorical

Capital Gain Integer

Capital Loss Integer

Weekly Work Hours Integer

Native Country Categorical

Income Binary

Machine Learning

Machine learning algorithms are computational models that enable
computers to make data-driven predictions. Supervised machine
learning involves training algorithms using a labeled dataset. This
type of learning allows the model to learn a mapping from input
data to output labels, enabling it to make predictions or classifi-
cations on unseen data (Michalski et al. 2013). In this study, six
different machine learning algorithms were employed, and the
results were obtained.

Decision Trees: Decision trees are a machine learning algorithm
used to solve classification and regression problems. This algo-
rithm analyzes the features in a dataset to reach a conclusion
through a series of decisions. The most significant advantage
of decision trees is their ease of interpretation. The general formula
for a decision tree is as shown in (1):

f (x) =
M

∑
m=1

cm · I(x ∈ Rm) (1)

In this equation, f (x) represents the predicted output for the
input feature vector x. M enotes the total number of nodes in the
tree. Rm represents the region at node m. The indicator function
I(x ∈ Rm) takes the value 1 if x belongs to the region Rm and 0
otherwise. cm denotes the predicted value at node, m.

Random Forest: A random forest is an ensemble algorithm that
combines multiple decision trees. The main idea behind the math-
ematical formulation of the random forest model is to aggregate
the predictions of each decision tree, either by averaging them (for
regression tasks) or by voting (for classification tasks) (Erdem et al.
2018).

f (x) =
1
N

N

∑
i=1

fi(x) (2)

In this formula, f (x) represents the predicted target variable.
N denotes the total number of trees, and fi(x) represents the pre-
diction of the i-th tree for the input dataset x. This formula takes
the predictions of each tree and then averages these predictions
or performs voting to arrive at the final prediction. This approach
helps make the model more stable and generally improves perfor-
mance, as the error tendency of one tree can offset the errors of
other trees. Additionally, the algorithm introduces randomness
in tree construction, ensuring that each tree is different from the
others.

Gradient Boosting : Gradient boosting is a machine learning
method often employing tree-based algorithms. Its primary goal
is to create a strong predictive model by combining weak learners
(usually decision trees) (Atasoy and Demiröz 2021; Friedman 2001).
Let the dataset consist of points (xi, yi) , i = 1, 2, 3, ..., N. Here xi
represents the input features, and, yi represents the target variable.
If the model’s initial prediction is set to zero:

F0(x) = 0 (3)

In each iteration, a new prediction model is added to minimize
the error function.

Fm(x) = Fm−1(x) + ρ · hm(x) (4)

In this equation, m represents the number of iterations, ρ rep-
resents the learning rate and hm(x) represents the newly added
weak model.

Extreme Gradient Boosting (XGBoost): Extreme Gradient Boost-
ing (XGBoost) is a machine learning algorithm and fundamentally
a tree-based model. This algorithm is an ensemble model that
combines a series of weakly learned Decision Trees. These trees are
structured to complement each other and correct errors (Chen et al.
2019; Mitchell and Frank 2017). The Extreme Gradient Boosting
algorithm is frequently used to solve regression and classification
problems, and its mathematical function is generally as shown in
(5):

F(x) = L(θ) + Ω(θ) (5)

In this equation, L(θ) represents the loss function, measuring
how far the model’s predictions deviate from the actual values.
For classification problems, cross-entropy functions can be used as
the loss function.
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L(θ) =
n

∑
i=1

(−yi log(ŷi) + (1 − yi) log(ŷi)) (6)

In this equation n represents the total number of data points, ŷi,
represents the actual value of the i-th data point, and ŷi, represents
the model’s prediction for the i-th data point.

Ω(θ) = γT +
λ

2

T

∑
j=1

w2
j (7)

In this equation T represents the number of trees and wj rep-
resents the node weights of the j-th tree. γ adds a regularization
term to each tree and controls the addition of trees. λ controls
the complexity of the tree by penalizing the square of the node
weights. The last term of Equation (5), θ, represents the parameters
of the model. These parameters include the decision rules at the
nodes of each tree, the weights, and other features.

Adaptive Boosting (AdaBoost): Adaptive Boosting is an ensemble
learning algorithm that combines multiple weak learners to create
a strong learner. This algorithm weights each learner based on
its misclassification rate after training it, using a weighted error
function (Bulut 2016). This error represents the difference between
the actual label yi and the predicted label (ht(xi)).

ϵ =
N

∑
i=1

w(t,i) · ∏ (ht(xi) ̸= yi) (8)

In this equation, N represents the number of data points,
w((t, i)) is the weighting factor of the t-th learner, and Π(·) is
the representative indicator function.

Weights are assigned to the learners using the formula in (9).

at =
1
n

ln
(

1 − ϵt
ϵt

)
(9)

In this formula, ϵt, represents the weighted error rate. The
assigned weights depend on the performance of the learner. To
update the weights, the formula in (10) is used.

wt+1,i =
wt,i · e−at ·yt ·ht(xi)

Zt
(10)

In this equation, Zt is the normalization factor that ensures the
sum of the weights equals 1. With the contributions of all learners,
a strong learner is created using the formula below. In this way, the
Adaptive Boosting algorithm combines a series of weak learners
to form a strong learner.

H(x) = sign

(
T

∑
t=1

at · ht(x)

)
(11)

Light Gradient Boosting Machines (LightGBM): Light Gradient
Boosting Machines (LightGBM) is an implementation of the Gradi-
ent Boosting framework, a machine learning framework. There-
fore, the mathematical formula of the LightGBM algorithm gen-
erally resembles the formula of the Gradient Boosting algorithm.
LightGBM stands out with features such as histogram-based learn-
ing and scaled gradient descent. Its basic mathematical formula is
as shown in (12).

Fm = Fm−1(x) + η · hm(x) (12)

In this equation, Fm(x), represents the total prediction after
adding the m-th . F(m−1)(x) , is the prediction after m-1 trees

have been added. η represents the learning rate and hm(x) , is the
contribution of the m-th tree. Light Gradient Boosting Machines
accelerate the learning process and allow for reduced memory
usage, particularly due to their use of histogram-based learning.

eXplainable Artificial Intelligence (XAI)

Explainable Artificial Intelligence (XAI) refers to a set of processes
and methods aimed at providing clear and understandable ex-
planations for the decisions offered by Machine Learning models.
The architecture of XAI consists of three main components (Adadi
and Berrada 2018; Vilone and Longo 2020): 1) Machine Learning
Algorithm, 2) Explanation Algorithm 3) Interface The explanation
algorithm is used to provide information about the most relevant
and influential factors in the process. The interface component
presents the information generated by the explanation algorithm.In
this study, the two most popular algorithms of Explainable Artifi-
cial Intelligence were examined.

Local Interpretable Model-Agnostic Explanations (LIME): LIME
is a popular Explainable Artificial Intelligence approach that uses
the local behavior of a model to provide interpretable and explain-
able information about the most relevant and influential factors
in predictions. The LIME algorithm generally follows the steps
of categorizing numerical variables, generating new observations
similar to the dataset’s distribution, and developing an explainable
model based on this dataset to determine the effects of variables on
observations (Ribeiro et al. 2016; ElShawi et al. 2021). The general
mathematical representation of the LIME model is as follows:

e(x) = argmin
g∈ς

( f , g, πx) + Ω(g) (13)

In this equation x is the example being explained. The expla-
nation of x ( f , g, πx) is the result of maximizing the fidelity term
while considering the complexity Ω(g).Here, f represents a black-
box model being explained, and g represents the interpretable
model that explains (Molnar 2018).

Shapley Additive Explanations (SHAP): SHAP is an Explainable
Artificial Intelligence approach that uses Shapley values, derived
from game theory, to provide interpretable information about the
most important and influential factors in predictions. Shapley val-
ues originate from cooperative game theory and represent a con-
cept that fairly measures a player’s contribution. SHAP provides a
framework for understanding how a model makes predictions us-
ing these values (Lundberg and Lee 2017; Antwarg et al. 2021).The
general mathematical formula of the SHAP algorithm is as follows:

ϕi( f ) =
1

N! ∑
π

[
f (xπ(i))− f (xπ)

]
(14)

In this equation, f (x) represents the output of the model (where
x is the input features.). Here π represents all N! permutations, and
x(π(i)) is thei-th permutation of x’s feature according to π . The
SHAP value adapts Shapley values to understand the contribution
of each parameter to the model’s prediction.

Model Performance Metrics

Model performance metrics are measurements used to evaluate
the performance of a machine learning model (Cıhan and Coşkun
2021). These metrics can be used to understand how well a model
performs, compare different models, or tune the model’s hyperpa-
rameters.
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Confusion Matrix: A confusion matrix is used to interpret the re-
sults of a classification model and to cross-examine the errors in
the relationship between actual and predicted values.

■ Table 2 Confusion Matrix showing prediction outcomes ver-
sus actual values

Actual Values

Positive (1) Negative (0)

Predicted Values
Positive (1) TP [1,1] FP [1,0]

Negative (0) FN [0,1] TN [0,0]

• True Positive (TP): Correctly predicting the positive condition.
• True Negative (TN): Correctly predicting the negative condi-

tion.
• False Positive (FP): Incorrectly predicting the positive condi-

tion.
• False Negative (FN): Incorrectly predicting the negative con-

dition.

Accuracy, Precision, Recall, F1-Score: These scores are derived
from the confusion matrix and help provide a clearer understand-
ing of the model’s success.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1-Score =
2 · Precision · Recall
Precision + Recall

(18)

DISCUSSION AND RESULTS

In this study, the operations were performed using Python pro-
gramming language version 3.11.4. In the dataset used, the pre-
dicted parameter was classified based on whether the annual in-
come of a person/observation is less than or greater than $ 50,000.
Among the 34,014 observations, the annual income is less than
$ 50,000, while for 11,208 observations, it is more than $ 50,000.
The percentage distribution of the target variable in the dataset is
presented in Figure 1.

Figure 1 Class Distribution of the Target Variable in the Dataset.

After the other parameters in the dataset were adjusted to be
suitable inputs for machine learning algorithms, the data was
trained using six different machine learning algorithms. Since the
target variable in the dataset is binary, classification algorithms
were preferred over regression algorithms. The performance met-
rics of the models used are presented in Figure 2.

Figure 2 Performance Comparison of Machine Learning Algorithms
Balanced Dataset.

Since the target variable’s class distribution in the dataset is
imbalanced, it is classified as an imbalanced dataset. Performance
metrics based on the correct classification rate are unsuitable for
this scenario (Chawla et al. 2002), as confirmed by the results in Fig-
ure 2. To address this issue, the Synthetic Minority Oversampling
Technique (SMOTE) was applied, generating synthetic examples
for the minority class by creating artificial instances along the
line segments joining each minority class instance with its nearest
neighbors (Blagus and Lusa 2013). After applying SMOTE, the tar-
get variable "Income" was balanced, consisting of 23,756 examples
earning more than $ 50,000 and 23,756 examples earning less.

After addressing the imbalance in the dataset, the machine
learning algorithms were retrained and tested. The results are
presented in Figure 3.

Figure 3 Comparison of Machine Learning Algorithm Performances.

The performance comparisons of the machine learning algo-
rithms used in the study for the imbalanced dataset and the dataset
adjusted with SMOTE are shown in Figures 2 and 3. The algorithm
that demonstrated the best performance, as seen in these figures,
was the Light Gradient Boosting Machines (LightGBM) algorithm.
The results obtained from this algorithm were explained using
Explainable Artificial Intelligence algorithms.

As shown in Figure 4, the "Capital Gain" parameter has the most
significant impact on determining which class a sample belongs
to. Following this, "Marital Status" is observed to be another key
parameter influencing an individual’s annual income. In contrast,
the parameters "Workclass" and "Sex" are seen to have the least
effect on an individual’s annual income.

In Figure 5, we can examine in greater detail the impact of the
parameters/variables in the dataset on the classes of the target
variable. In the graph in Figure 5a, we observe the SHAP values of
the parameters/variables when the annual income of our example
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Figure 4 Class Distribution of the Target Variable in the Dataset.

(a) (b)

Figure 5 SHAP value distribution for different models. (a) Model
A, (b) Model B.

(individual) is less than $ 50,000, while in Figure 5b, we observe
the SHAP values when the annual income exceeds $ 50,000. For
instance, the SHAP value of the "Capital Gain" parameter ranges
between -2 and 6 (or between -6 and 2 for the "0" label), and when
the target variable’s label is 1, the SHAP value ranges from 0 to 6.

(a) (b)

Figure 6 Parameter Dependence Plot of the SHAP Algorithm.

Another interface provided by the SHAP algorithm, the Param-
eter Dependence Plot (Figure 6), allows us to observe the classi-
fication of the observation/individual based on the value of the
relevant parameter. In Figure 6a, the dependence of the "Capital
Gain" parameter on the class to which the observation/individual
belongs is shown, while in Figure 6b, the dependence of the "Mari-
tal Status" parameter on the class of the observation/individual is
illustrated. From this, it can be inferred that if the "Capital Gain"
parameter value exceeds 100,000, the annual income of the ob-
servation/individual will be more than $ 50,000. With the SHAP

algorithm, an Explainable Artificial Intelligence algorithm, we can
clearly observe the impact of parameters/variables and their val-
ues on the classes of the target variable. On the other hand, with
another Explainable Artificial Intelligence algorithm, LIME, we
examine locally which parameters influence the classification of
the observation/individual.

(a) (b)

Figure 7 Variable Importance Plot of the LIME Algorithm.

The graphs in Figure 7 show the probability of an individual
belonging to a specific class, the parameters influencing this classi-
fication, and the actual values of those parameters for the observa-
tion. For example, the observation/individual in Figure 7a has a
97% probability of having an annual income greater than $ 50,000.
In contrast, the observation/individual in Figure 7b has a 93 %
probability of having an annual income less than $ 50,000.

CONCLUSION

Studies investigating the practical use of machine learning and
artificial intelligence algorithms to predict individuals’ annual in-
come generally aim to develop income prediction models and
achieve more accurate predictions. In line with this goal, this study
conducted a comprehensive analysis of several machine learning
algorithms using the Python programming language. The imbal-
anced distribution of the dataset was corrected using the SMOTE
method, followed by a comparison of the performance of the ma-
chine learning algorithms. At this stage, the best performance was
achieved with the Light Gradient Boosting Machines algorithm.
Additionally, the impact of parameters/variables on the classes
was analyzed using explainable artificial intelligence algorithms.
These analyses helped us better understand the study’s results
and explain the decisions made by the model. These findings
underscore the importance of employing effective methods to han-
dle imbalanced datasets and interpret the predictions of machine
learning models in data science applications.
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ABSTRACT Breast cancer is one of the most common malignancies among women globally, and it constitutes a significant public
health problem in terms of morbidity and mortality. Since early-stage diagnosis significantly increases treatment success and survival rates,
effective screening and diagnostic methods are of great importance. Various imaging modalities, such as mammography, ultrasonography
(US), and magnetic resonance imaging, play a critical role in the detection of breast cancer. Ultrasound, in particular, is a valuable imaging
method due to its non-ionizing nature, its accessibility, and its role as a complementary tool in dense breast tissue. In recent years,
deep learning (DL) algorithms, particularly Convolutional Neural Networks (CNNs), have exhibited promising results in medical image
analysis, especially in cancer detection. The aim of this research is to investigate and compare the four most common CNN architectures,
ResNet50, DenseNet169, InceptionV3 and InceptionV4, for breast ultrasound images to classify breast cancer automatically. We have
utilized publicly available breast ultrasound image datasets for the models and reported results in metrics of accuracy, precision, sensitivity,
and F1-score. The InceptionV3 architecture had the best performance across the models examined with metrics of accuracy: 96.67%,
precision: 96.55%, sensitivity: 96.38%, and F1-score: 96.41%. It was also noticed that the DenseNet169 model performed similarly to the
InceptionV3 model but had substantially fewer parameters. The results of this study suggest that the InceptionV3 DL architecture may
have significant potential for accuracy in the classification of cancer from breast ultrasound images and can contribute to the development
of computer aided diagnosis systems for the early detection of breast cancer.

KEYWORDS

Breast cancer
Deep learning
Breast ultra-
sound
Image classifica-
tion
Computer-aided
diagnosis (CAD)

INTRODUCTION

Breast cancer is one of the leading cancers that affect women’s
health around the world and is the abnormal and unregulated
growth of mammary epithelial cells (Kim et al. 2025; Xiong et al.
2025). The origin of breast cancer is a multifactorial process medi-
ated by genetic susceptibility, hormones, lifestyle, and environmen-
tal factors (Obeagu and Obeagu 2024). Given that the prognosis
for treatment response and survival rate improve drastically if the
cancer is found at an early stage, better screening and diagnostic
strategies are crucial. Therefore, it is important to study medical
imaging techniques that are the least invasive way to characterize
abnormal changes in the breast (Kiani et al. 2025; Alshawwa et al.
2024; Begum et al. 2024). Breast cancer screening programs have re-
lied on mammography as the definitive tool of choice (Katsika et al.
2024; Trentham-Dietz et al. 2024). However, mammography may
lack diagnostic sensitivity particularly with women with dense
breast tissue and in women who are younger. This raises the need
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for complementary or alternative forms of imaging (Abeelh and
AbuAbeileh 2024).

Ultrasonography is a valuable component in evaluating breast
lesions, primarily due to its non-ionizing nature, availability, af-
fordability, and real-time images (Iacob et al. 2024). Specifically, it
has advantages for the evaluation of breast lesions, especially in de-
termining whether suspicious findings on mammography are cys-
tic or solid masses, and facilitates biopsy procedures. For women
with dense breast parenchyma, ultrasonography is essentially an
adjunct that improves mammographic diagnostic performance
and provides clarity in graphically characterizing lesions (Gordon
et al. 2025). However, ultrasonography has disadvantages, includ-
ing operator-dependency that introduces inter-observer variability
in the detection and interpretation of lesions. Additionally, ultra-
sonography is limited in its ability to detect microcalcifications.
Research has been conducted to evaluate new ways to provide
more objective and standardized analysis of ultrasound images
(Vogel-Minea et al. 2025; Rana et al. 2024).

Artificial intelligence (AI), and deep learning (DL) algorithms
in particular, have generated paradigm shifting advances in med-
ical image analysis in recent years (Pacal et al. 2025; Pacal and
Attallah 2025a). DL architectures, such as convolutional neural
networks (CNNs), have shown significant potential in many med-
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ical specialties, including radiology and pathology, due to their
ability to automatically learn complex patterns and hierarchical
features from massive image datasets (Ozdemir et al. 2025; Lubbad
et al. 2024b; Pacal 2025). With respect to breast cancer, DL models
have demonstrated excellent performance to achieve high levels
of accuracy in the detection, classification, and segmentation of
suspicious lesions from mammograms, ultrasound images, and
magnetic resonance scans (İnce et al. 2025; Lubbad et al. 2024a). In
this paper, we plan to train several CNN algorithms (e.g. ResNet50,
DenseNet169, InceptionV3, InceptionV4) with breast ultrasound
image dataset publicly available online and then analyze and com-
pare the results to determine their potential to assist clinicians in
breast cancer diagnosis (Pacal and Attallah 2025b; Cakmak et al.
2024; Bayram et al. 2025). The hope is that by performing a DL
based analysis of ultrasound images we can assist with the early
diagnosis process and also improve diagnostic accuracy (Cakmak
and Pacal 2025; Zeynalov et al. 2025; Kurtulus et al. 2024).

The field of medicine is undergoing a transformative evolution
through the integration of AI, particularly its sub-disciplines of DL
and machine learning (ML) (Obuchowicz et al. 2024; Koçak et al.
2025). These technologies offer revolutionary advancements across
a broad spectrum, ranging from the early diagnosis of diseases to
the development of personalized treatment protocols, from drug
discovery to the analysis of complex biological data (Li et al. 2024;
Islam et al. 2024). Medical imaging, in particular, holds immense
potential due to the capacity of AI algorithms to detect subtle
patterns and anomalies imperceptible to the human eye and to
rapidly process and interpret large volumes of data (Chambi et al.
2025; Meng et al. 2024). Disciplines such as radiology, pathology,
and oncology are rapidly adopting these innovations with the
promise of enhancing diagnostic accuracy, optimizing workflows,
and ultimately improving patient outcomes. In the management of
prevalent and serious health issues like breast cancer, the combina-
tion of AI with accessible imaging modalities such as ultrasound is
opening promising avenues for early-stage detection and effective
treatment strategies (Rajkumar et al. 2024).

In studies on breast cancer classification and segmentation, var-
ious AI approaches have gained prominence. Abhisheka et al.,
highlighting the importance of breast cancer in the healthcare
sector, noted the insufficiency of traditional ML or DL models
alone and, accordingly, proposed the Hybrid Breast Cancer Pre-
diction System (HBCPS) model. This system combines deep CNN
features (obtained via ResNet50) with handcrafted features (His-
togram of Oriented Gradients - HOG) and uses a Support Vector
Machine (SVM) for classification. The system also incorporates
a Block-Matching and 3D filtering (BM3D) filter to reduce noise
in Breast Ultrasound (BUS) images, achieving satisfactory results
on the BUSI dataset, such as 89.02% accuracy and an AUC of
0.8717 (Abhisheka et al. 2025). Similarly, Latha et al. (2024) com-
bined a scalable CNN architecture, EfficientNet-B7, with advanced
data augmentation techniques to address low accuracy in minor-
ity classes, particularly malignant tumors. They also integrated
eXplainable AI (XAI) techniques like Grad-CAM to enhance the in-
terpretability of the model’s predictions. With this approach, they
achieved a high classification accuracy of 99.14%, significantly
outperforming existing CNN-based approaches. These studies
underscore the potential of both hybrid modeling and the integra-
tion of advanced CNN architectures with XAI techniques in breast
cancer classification.

Other notable contributions in the literature have focused on
improving segmentation accuracy and computational efficiency.
Umer et al. (2024) proposed a U-shaped autoencoder-based CNN

model featuring a multi-attention mechanism and a triple decoder,
focusing on capturing multi-scale spatial features and highlight-
ing the tumor region, particularly in BC segmentation from U/S
images. Their proposed model achieved Dice scores of 90.45% and
89.13% on the UDIAT and BUSI datasets, respectively. On the other
hand, Cai et al. (2024), as a solution to the challenges of high com-
putational complexity and large model parameters in existing seg-
mentation methods, developed the SC-Unext model. This model,
based on the Unext network and inspired by the mechanisms of
cellular apoptosis and division, not only improved segmentation
performance but also reduced model parameters and computa-
tional resource consumption, achieving a 75.29% Dice score and
97.09% accuracy on the BUSI dataset; it also demonstrated fast in-
ference times on CPUs. These studies demonstrate the importance
of developing not only complex architectures but also efficient and
lightweight models, especially for segmentation tasks.

Finally, the comparison of next-generation architectures and the
development of holistic systems for clinical application also hold a
significant place on the research agenda. Cai et al. (2024) compared
Mamba-based models (VMamba and Vim) with traditional CNNs
and Vision Transformers (ViTs), demonstrating that some Mamba-
based architectures offer statistically significant performance im-
provements, particularly due to their ability to capture long-range
dependencies in limited data. For instance, on dataset B, Mamba-
based models were reported to provide an improvement of 1.98%
in mean AUC and 5.0% in mean Accuracy. Nasiri-Sarvi et al. (2024)
adopted an approach aimed at presenting the radiologist with
both the tumor mask and its classification. They examined dif-
ferent DL models and identified the best-performing one, which
achieved over 90% accuracy, 92% precision, 90% sensitivity, and a
90% F1-score on the BUSI dataset. This study emphasizes that DL
architectures are effective in the classification and segmentation
of ultrasound breast images and could be used in clinical trials
in the near future. Such comparative studies and proposals for
integrated systems further solidify the role of AI in breast cancer
diagnosis and pave the way for its clinical adaptation (Gagliardi
et al. 2024).

MATERIALS AND METHODS

Dataset
In this research, a publicly available dataset, the "Breast Ultrasound
Images Dataset", was used to classify and analyze breast ultra-
sound images. This dataset was made available through the Kaggle
platform by Sabah Saraki (Kaggle 2025), and contains ultrasound
images which demonstrate different appearances of breast cancer.
The dataset contains samples of ultrasound images grouped into
three main classes based on pathologically confirmed diagnoses of
benign tumors, malignant tumors, and normal breast tissue images.
This variety gives a solid ground for evaluating the capability of
the DL models to distinguish other tissue structures and lesion
types.

In order to ensure a standardized and reproducible model de-
velopment and evaluation process, the dataset, comprising a total
of 780 samples (437 benign, 210 malignant, and 133 normal), was
meticulously partitioned into training, validation, and testing sub-
sets. This partitioning allocated 70% of the data (545 samples) to
the training set, 15% (115 samples) to the validation set, and the re-
maining 15% (120 samples) to the test set. These proportions were
selected to ensure the model is trained on sufficient data, while
simultaneously allowing for a reliable assessment of its generaliza-
tion capability and mitigating the risk of overfitting. Furthermore,
a stratified sampling approach was employed to ensure that the
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class distribution within each subset precisely mirrors that of the
original dataset, a crucial step to prevent the model from develop-
ing a bias towards any particular class. Consequently, the training
set was composed of 305 benign, 147 malignant, and 93 normal
samples; the validation set contained 65 benign, 31 malignant, and
19 normal samples; and the test set consisted of 67 benign, 32 ma-
lignant, and 21 normal samples. This dataset partitioning is also
illustrated in Figure 1.

Figure 1 Distribution of the Breast Ultrasound Images Dataset into
Training, Validation, and Test Sets (70%-15%-15%)

To better visualize the structure of the dataset and the types of
images it contains, representative ultrasound images from each
class (benign, malignant, and normal) are presented in Figure 2.
As can be seen in Figure 2, benign lesions generally present with
regular borders and a homogeneous internal echo, whereas ma-
lignant lesions may exhibit more irregular margins, spiculated
extensions, and heterogeneous internal structures. Normal breast
tissue images, in turn, show typical fibroglandular and adipose tis-
sue patterns. These examples reflect not only the visual differences
between the classes but also the inherent challenges of ultrasound
imaging, such as speckle noise and low contrast. These visual
representations help in understanding the fundamental morpho-
logical features that our models must learn and differentiate, and
they provide an insight into the diversity of the dataset.

Figure 2 Sample Ultrasound Images Illustrating the Three Classes
in the Breast Cancer Dataset: Benign, Malignant, and Normal.

Data Augmentation
To enhance the generalization capability of the DL models and to
mitigate the problem of overfitting, a frequent challenge in limited
datasets such as medical images, various on-the-fly data augmen-
tation techniques were integrated into the training process in this
study. Initially, as the focus was on the classification task, the
mask.png files, which were included in the original dataset for

segmentation purposes, were excluded from the analysis. During
the training phase, the primary augmentation methods randomly
applied to each image were as follows: images were first subjected
to a "Random Resized Crop," where they were cropped to a ran-
dom size with a scale ranging from 8% to 100% of the original area
(scale: [0.08, 1.0]) and an aspect ratio between 0.75 and 1.33 (ratio:
[0.75, 1.3333333333333333]), and subsequently resized to 224x224
pixels (img-size: 224) using a random interpolation method (train
interpolation: random). Additionally, random horizontal flipping
was applied to each image with a 50% probability (hflip: 0.5). For
color-based augmentations, random alterations were made to the
color properties of the images, including brightness, contrast, sat-
uration, and hue, with a factor of 0.4 (color-jitter: 0.4). Vertical
flipping was not utilized in this study (vflip: 0.0). These on-the-fly
augmentation strategies were intended to ensure that the model
encounters differentiated data samples during each training epoch,
thereby preventing it from becoming overly dependent on the spe-
cific features of the training data and aiming for a more robust and
reliable performance on unseen data (Wang et al. 2024; Mumuni
et al. 2024).

Model Architectures

In this study, for the automatic classification of breast cancer from
breast ultrasound images, well-established and widely recognized
deep CNN architectures from the field of computer vision were uti-
lized. In domains such as medical imaging, where the amount of
labeled data is often limited, adopting a transfer learning approach
rather than training a model from scratch presents significant ad-
vantages. Transfer learning enables the transfer of the rich feature
extraction capabilities of models pre-trained on large-scale, general-
purpose datasets (e.g., ImageNet) to a more specific and smaller
target dataset. This approach aims to achieve faster model con-
vergence, improved generalization performance, and a reduced
risk of overfitting, particularly when working with limited data.
Within the scope of this study, all selected CNN architectures were
initialized with weights pre-trained on the ImageNet dataset and
were subsequently subjected to a fine-tuning process on our target
dataset comprising breast ultrasound images.

First, the ResNet50 architecture, based on the principle of resid-
ual learning, was employed. Developed by He et al., ResNet archi-
tectures addressed the vanishing gradient problem encountered
in the training of very deep networks through the use of "residual
blocks" containing "shortcut connections," which allow the input
to be passed directly to subsequent layers. ResNet50, a 50-layer
deep implementation of this structure, is frequently preferred as
a robust baseline model for image classification tasks (He et al.
2016). Another architecture of choice was DenseNet169. Proposed
by Huang et al., Densely Connected Networks (DenseNets) intro-
duce a "dense connectivity" structure where each layer receives
the feature maps from all preceding layers as input and passes on
its own feature maps to all subsequent layers. This architecture
strengthens feature propagation, encourages feature reuse, reduces
the number of parameters, and improves gradient flow, making it
particularly prominent for its parameter efficiency; DenseNet169
is a 169-layer version of this architecture (Huang et al. 2017).

The study also evaluated two models from the Inception ar-
chitecture family, developed by Google, which are capable of cap-
turing features at multiple scales simultaneously. InceptionV3,
through its "Inception modules," applies convolutional filters of
different sizes (e.g., 1x1, 3x3, 5x5) and pooling operations in par-
allel at the same layer level and concatenates their outputs. This
structure allows the model to analyze complex visual patterns at
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various scales, while performance is optimized through techniques
such as factorizing larger convolutions into smaller ones and using
auxiliary classifiers. InceptionV4, as an advancement over Incep-
tionV3, aims to deliver improvements in both performance and
computational efficiency by presenting the Inception modules in
a more uniform and simplified structure. This model is charac-
terized by deeper and more optimized Inception blocks (Szegedy
et al. 2016).

These four distinct CNN architectures (ResNet50, DenseNet169,
InceptionV3, and InceptionV4) were selected to compare their
effectiveness in the task of differentiating between benign, malig-
nant, and normal tissue classes in breast ultrasound images. The
distinct architectural approaches and feature extraction strategies
of each model are expected to approach this challenging medical
image classification problem from different perspectives, thereby
providing valuable insights into which architecture or architectural
features are more suitable for this specific task. The performance of
the models is carefully analyzed using various evaluation metrics,
and the results contribute to the literature on the development of
deep learning-based automated systems for the early diagnosis of
breast cancer.

Evaluation Metrics
Assessing how well DL models work is a vital process to assess
their usefulness, provide rationale for relevant decisions, and sup-
port data-driven decisions. Performance evaluation criteria can
fulfill many important roles such as assessing the effectiveness of
a classification models, helping them to be optimized, revealing
errors or biases in the data, comparing models, and detecting over-
fitting. This paper focuses specifically on performance metrics for
breast cancer classification, at the same time, we have decided to
utilize standard evaluation criteria that are clearly entrenched in
the academic literature.

The basic metrics that are used in this project (accuracy, preci-
sion, recall, and F1-score) are important in not only DL but other
areas. Accuracy can be defined as the number of correctly classi-
fied instances over the total number of instances, giving insight
into the performance as a whole. Precision (true positives / (true
positives + false positives)) tells how reliable the model is in classi-
fying positive instances; if the model has a high precision, it means
there are few if any false positives. Recall tells us about the number
of actual positives correctly identified the measure of complete-
ness. The F1-score is defined as the harmonic mean of precision
and recall, thus making it a single measure of performance that
balances the trade-off between false positives and false negatives.
While these definitions may seem complicated, they can also be
defined mathematically:

Accuracy =
Number of correct predictions

Number of total predictions
(1)

Precision =
True Positive

True Positive + False Positive
(2)

Recall =
True Positive

True Positive + False Negative
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

RESULTS AND DISCUSSION

In this section, we present and analyze the performance results
of the different CNN architectures we evaluated for the purposes
of classifying breast ultrasound images. We compared the per-
formance of the ResNet50, DenseNet169, InceptionV3 and Incep-
tionV4 models used in this work using some fundamental classi-
fication performance metrics: Accuracy, Precision, Recall, and F1
score - as well as Quantification metrics including the number of
parameters (Params M) and GFLOPs (Giga Floating Point Opera-
tions per Second), which estimate the complexity of models and
computational resources required for both model training and in-
ference. We consider that exploring such metrics is vital to gaining
insight into models’ diagnostic performance and important use
cases.

The results obtained are summarized in Table 1. Table 1 illus-
trates the performance metrics reached by each model on the test
dataset, along with information on model complexity. These data
show the strengths and weaknesses of the various architectures
and demonstrate the trade-off between performance and computa-
tional expense.

■ Table 1 Comparative Performance and Complexity of CNN
Models for Breast Ultrasound Image Classification

Model Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs

Inception V3 96.67 96.55 96.38 96.41 21.79 5.67

DenseNet 169 94.17 92.71 95.43 93.91 12.49 6.72

Inception V4 94.17 92.01 95.97 93.60 41.15 12.25

ResNet 50 90.83 90.29 89.08 89.10 23.51 8.26

The data from Table 1 clearly illustrates that the InceptionV3
model showed the best performance. With an accuracy of 96.67%,
precision of 96.55%, sensitivity of 96.38% and F1-score of 96.41%,
InceptionV3 was the most capable of successfully classifying breast
ultrasound images. It is expected that InceptionV3 performs so
well because of the architecture’s ability to capture features at
different scales and learn complex patterns. Also worth noting,
is that InceptionV3 (21.79 million parameters, 5.6719 GFLOPs)
delivered the best results from a model complexity standpoint
not because it was the most complex model. Having the lowest
GFLOPs value means that it was performing at a high level while
using a relatively low amount of computational cost.

The DenseNet169 model also achieved highly competitive re-
sults. With 94.17% accuracy, 92.71% precision, 95.43% sensitivity,
and a 93.91% F1-score, it exhibited the second-best performance
after InceptionV3. The most striking feature of DenseNet169 is
its model complexity; with 12.49 million parameters, it has the
lowest parameter count among the evaluated models, and with
6.7169 GFLOPs, it has the second-lowest GFLOPs value after In-
ceptionV3 (there may be an error in the table, as the GFLOPs
for InceptionV3 is lower). This indicates that, as a result of its
dense connectivity structure that enhances feature propagation
and increases parameter efficiency, DenseNet169 offers a favorable
performance-to-efficiency balance. DenseNet169 could be an at-
tractive alternative, especially for scenarios where computational
resources are constrained.

The InceptionV4 model, despite having an accuracy rate of
94.17% similar to DenseNet169, along with 92.01% precision,
95.97% sensitivity, and a 93.60% F1-score, is the model with the
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highest complexity and computational cost among those evalu-
ated, at 41.15 million parameters and 12.2450 GFLOPs. The fact
that it did not surpass InceptionV3, despite having a deeper and
more complex structure, suggests that for this specific task and
dataset, increased complexity does not invariably translate to bet-
ter performance. ResNet50, in contrast, exhibited a more modest
performance compared to the other three models, with 90.83%
accuracy and an 89.10% F1-score. Although it is a strong base-
line model, it lagged behind the other more modern and complex
architectures used in this study. It possesses a moderate level of
complexity with 23.51 million parameters and 8.2634 GFLOPs.

The findings of this study indicate that the InceptionV3 architec-
ture offers a compelling combination of high diagnostic accuracy
and balanced computational efficiency. In contrast, DenseNet169
presents itself as a potent alternative for resource-constrained envi-
ronments, owing to its lower parameter size and computational
cost. These findings represent a major contribution to the choice of
DL architectures in the context of developing automated solutions
for the early diagnosis of breast cancer, and possibilities for future
involvement of real-world clinical applications. In all cases, the
choice of architecture must be assessed relative to the intended
application’s requirements (e.g., maximum accuracy versus fast
inference time). To further assess the classification performance of
the best performing InceptionV3, its confusion matrix is shown in
Figure 3.

Figure 3 Confusion Matrix of the InceptionV3 Model for Breast
Ultrasound Image Classification.

CONCLUSION

In this study, the performance of four different deep Convolutional
Neural Network (CNN) architectures (ResNet50, DenseNet169,
InceptionV3, and InceptionV4) was comprehensively compared
and evaluated for the classification of breast cancer from breast
ultrasound (US) images. The findings clearly demonstrated that
the InceptionV3 model exhibited the highest classification perfor-
mance compared to the other evaluated architectures, with supe-
rior metric values of 96.67% accuracy, 96.55% precision, 96.38%
sensitivity, and a 96.41% F1-score. This high performance can
be attributed to the Inception architecture’s ability to effectively
capture multi-scale features and learn complex visual patterns,
while it is also noteworthy that the model offers a relatively effi-
cient computational cost with 21.79 million parameters and 5.6719
GFLOPs.

The DenseNet169 architecture also stood out as a promising
alternative for resource-constrained environments, drawing atten-
tion with its 94.17% accuracy rate and particularly its low parame-
ter counts of 12.49 million. While InceptionV4 could not surpass
InceptionV3 despite its high complexity, ResNet50 yielded more
modest results. This study demonstrates that InceptionV3 is a
strong candidate for the classification of breast US images in terms
of both high diagnostic accuracy and acceptable computational effi-
ciency. The obtained results offer valuable insights for the selection
of appropriate DL architectures for the development of automated
systems for the early diagnosis of breast cancer and underscore
the potential for the integration of these technologies into future
clinical applications. Validating these models on larger and more
diverse datasets, investigating the impact of different data aug-
mentation strategies and fine-tuning techniques, and integrating
eXplainable AI (XAI) methods to enhance model interpretability
represent critical next steps for advancing research in this field.
Ultimately, such deep learning-based approaches have great po-
tential to support the decision-making processes of radiologists,
thereby improving the accuracy and efficiency of breast cancer
diagnosis.
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Deep Learning in Maize Disease Classification
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ABSTRACT As a strategic global crop, maize productivity is directly threatened by leaf diseases such as Southern Leaf Blight and
Gray Leaf Spot, making early and accurate detection crucial for food security. Artificial intelligence, particularly deep learning, provides a
powerful solution for the automated classification of plant diseases from images. This study developed an intelligent system to address this
challenge, utilizing the publicly available PlantVillage dataset to evaluate five leading Convolutional Neural Network (CNN) architectures:
DenseNet121, InceptionV3, MobileNetV2, ResNet-50, and VGG16. The models were optimized with established techniques, including
transfer learning, data augmentation, and hyper-parameter tuning, while a Soft Voting Ensemble strategy was used to enhance combined
performance. Evaluation across multiple metrics showed that InceptionV3 achieved the highest test accuracy at 94.47%. However,
MobileNetV2 demonstrated the strongest performance across all metrics with a 95% cumulative accuracy and proved highly efficient,
making it ideal for deployment on mobile devices. These findings confirm the significant potential of deep learning for building cost-effective
and efficient diagnostic systems in agriculture, ultimately contributing to the reduction of crop losses and the promotion of sustainable
farming practices.

KEYWORDS

Maize leaf dis-
ease
Deep learning
Image classifica-
tion
Transfer learning
Sustainable agri-
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INTRODUCTION

Maize is a major crop important to the global economy, being
the most produced and consumed cereal in the word (Willer et al.
2024a). It has a multitude of essential functions: food production
for human consumption, livestock production for animal feed,
food industry, and industrial products like ethanol, oils, and starch
and thus has considerable relevance in the context of food security
and energy supply (Ranum et al. 2014; Willer et al. 2024b). Latest
2023 FAO data indicate global production of maize at over 1.2
billion tons a year, with production on about 200 million hectares
(Committee et al. 2023; Fang and Katchova 2023). The US is the
leading maize producing country, producing over 350 million tons
annually, making 30% of global production. Major maize pro-
duction states are Iowa and Nebraska, Illinois, Minnesota, and
Indiana. China is the second leading supplier of maize at roughly
270 million tons, followed by Brazil at about 125 million tons, while
Argentina, India ,and Ukraine are also major contributors (Philpott
2020; Demanyuk et al. 2023; Pignati 2018).

Despite this substantial production volume, maize remains vul-
nerable to several severe plant diseases affecting leaves, stalks,
and roots, which lead to significant yield and quality deteriora-
tion. The most notable diseases include: Gray Leaf Spot, Northern
Leaf Blight, Common Rust, Powdery Mildew, and Stalk and Root
Rot. These diseases cause enormous economic losses exceeding 10
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billion US dollars annually on a global scale (Bickel and Koehler
2021; Dinh and Joyce 2007). Studies indicate that losses can reach
up to 60% in severely infected regions, especially under humid
and warm climatic conditions that facilitate the spread of fungal
and bacterial infections (Teixeira et al. 2021a,b). Early detection
of maize leaf diseases is essential to limit the spread of infections
and preserve crop yield. However, traditional manual inspection
requires agricultural expertise, is costly, and often lacks precision.
For these reasons, recent scientific research has increasingly re-
lied on artificial intelligence (AI) and deep learning techniques
for plant disease diagnosis from images (Mahlein 2016; Kamilaris
and Prenafeta-Boldú 2018; Pacal 2025).Among these techniques,
convolutional neural networks (CNNs) have proven to be particu-
larly effective. CNNs are widely used in image classification and
have demonstrated high accuracy in recognizing complex visual
patterns (Sladojevic et al. 2016; Ferentinos 2018).

The advent of artificial intelligence (AI), and more specifically
its sophisticated subfields of machine learning (ML) (Cakmak and
Pacal 2025; Cakmak et al. 2024) and deep learning (DL) (Pacal
2025), has ignited a foundational transformation, redefining the
operational landscape across a multitude of global sectors. This
technological revolution is profoundly demonstrated in healthcare,
where AI has revolutionized diagnostic medicine by enhancing the
interpretation of medical imagery. Its applications are extensive,
powering breakthroughs in oncology through the early identifi-
cation of brain tumors (Pacal et al. 2025; İnce et al. 2025; Bayram
et al. 2025), pulmonary nodules (Ozdemir et al. 2025), and breast
cancer (Pacal and Attallah 2025), while also advancing specialized
fields like dental diagnostics (Lubbad et al. 2024b; Kurtulus et al.
2024) and urological pathology (Lubbad et al. 2024a). In a paral-
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lel trend, this same technological momentum is spearheading a
movement towards a more sustainable, efficient, and data-driven
agricultural industry. AI is becoming pivotal to modern farm-
ing by enabling critical functions such as the early diagnosis of
plant ailments via leaf image analysis (Zeynalov et al. 2025) and
the accurate forecasting of crop yields using data from satellites
and drones (Chouhan et al. 2024). Furthermore, it powers the de-
ployment of intelligent robotic systems for highly targeted weed
elimination (Goyal et al. 2025; Sathya Priya et al. 2025) and un-
derpins precision agriculture, where automated systems adjust
irrigation and fertilization in real-time according to immediate
soil and crop conditions, thereby optimizing resource manage-
ment and promoting sustainability (Maurya et al. 2025; Singh and
Sharma 2025; Surendran et al. 2024; Jaya Krishna et al. 2025). In this
project, the "Corn Leaf Disease" dataset was utilized to train and
test five of the most prominent CNN models for maize leaf disease
classification, namely: DenseNet121, InceptionV3, MobileNetV2,
ResNet50, and VGG16. The performance of these models was
evaluated using four primary metrics: accuracy, recall, precision,
and F1-score (Dong et al. 2023; Brahimi et al. 2024).

Despite the considerable potential of deep learning for plant dis-
ease classification, research specifically targeting the identification
of corn leaf diseases using convolutional neural network (CNN)
methodologies remains limited (Rui et al. 2022). Among the early
notable contributions, Priyadharshini et al. applied a modified
LeNet architecture to the PlantVillage dataset, successfully classify-
ing four corn disease categories with a high accuracy rate of 97.89%
(Zhang et al. 2018). Complementing this, Zhang et al. explored the
classification of eight distinct corn diseases by fine-tuning hyper-
parameters within the GoogleNet and Cifar10 frameworks, laying
foundational work in this domain (Ahila Priyadharshini et al. 2019).

Further advancing this field, Wang et al. employed customized
hyperparameter optimization on the ResNet-50 model, attaining
an impressive classification accuracy of 98.52% across five corn
disease classes (Waheed et al. 2020). In a related study, Waheed et al.
focused on DenseNet models optimized through hyperparameter
tuning to distinguish four corn diseases. While their DenseNet-
based approach achieved slightly lower accuracy (98.06%) com-
pared to the EfficientNet-B0 model, it notably reduced the model
size and parameter count, highlighting an effective trade-off be-
tween performance and computational efficiency (Chen et al. 2020).

Addressing transfer learning strategies, Chen et al. proposed
a hybrid model combining pre-trained ImageNet weights within
VGGNet and Inception modules. Their model, termed INC-VGGN,
achieved a minimum validation accuracy of 91.83% when tested on
corn images from the PlantVillage dataset, illustrating the promise
of integrated architectures (Meng et al. 2020). Recognizing the
challenges inherent in real-world deployment, Zeng et al. intro-
duced LDSNet, a highly lightweight CNN designed specifically for
corn disease diagnosis under complex backgrounds and dilation
issues. This model attained a test accuracy of 95.4%, demonstrating
practical applicability in field conditions (Pacal et al. 2024).

MATERIALS AND METHODS

Dataset
In this research, five of the leading Convolutional Neural Network
(CNN) architectures were used. The PlantVillage is one of the most
significant and well-known open-source datasets in the context of
plant disease diagnosis based on digital images. The PlantVillage
dataset was created as part of a research effort designed to support
farmers and researchers, with a large collection of high-quality
images, all annotated with the assistance of scholars in botany

and plant pathology. The PlantVillage dataset contains images of
leaves spanning several different crops, such as tomato, potato,
maize, grapevine and many more, as well as a wide range of plant
diseases (Hughes et al. 2015). For this study, only images of maize
leaves were used from the PlantVillage database because the focus
was on diagnosing and ultimately classifying diseases associated
with this important crop. The images were further divided into
four main categories leading to healthy maize leaves, and leaves
afflicted by Gray Leaf Spot, Common Rust and Northern Leaf
Blight. The dataset was chosen based on the quality of the images
and number of distinct disease cases that facilitate effective training
on deep learning model and advance classification accuracy. Table
1 details the composition of the dataset used in this study, which
was divided into training, validation, and testing sets to ensure
comprehensive model evaluation and to prevent data leakage
during the learning process. The figure 1 illustrates a number of
selected samples for each category from the utilized dataset.

■ Table 1 Distribution of Images for Training, Testing, and
Validation

Subset Number of Images Percentage (%)

Train 2,696 70

Test 579 15

Validation 577 15

Total 3,852 100

Figure 1 Visual Examples of Different Corn Leaf Conditions

Deep Learning Architectures
Machine learning has revolutionized technological advancement
and human development, becoming a major driving force behind
many modern applications such as improving search engine capa-
bilities, monitoring user-generated content on social media, and
enabling personalized recommendation systems in e-commerce.
With rapid technological progress, machine learning has become
an integral part of our daily lives, manifesting in intelligent tech-
nologies and advanced systems featuring capabilities like visual
object detection, speech recognition, and dynamic content adapta-
tion in digital environments (Lecun et al. 2015).The rapid progress
in artificial intelligence is largely attributed to the development of
deep learning, a specialized branch of machine learning that relies
on multilayered, complex neural networks to extract nonlinear
and intricate representations from large datasets. These models en-
able the identification of fine-grained features through hierarchical
structures and are trained using the backpropagation algorithm.
Deep learning has demonstrated exceptional success across many
domains such as image and video analysis, audio processing, and
natural language understanding. Convolutional Neural Networks
(CNNs) excel in handling spatial data, while Recurrent Neural
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Networks (RNNs) are more suitable for temporal or sequential
data like speech and text (Karaman et al. 2023; Pacal et al. 2022).

Although Geoffrey Hinton laid the theoretical foundations of
deep learning in 2006, widespread adoption of this technology
surged after deep models significantly outperformed traditional
algorithms in the ImageNet Large Scale Visual Recognition Chal-
lenge. Since then, deep learning has consistently achieved state-
of-the-art results across a wide array of applications including pat-
tern recognition, classification, prediction, drug discovery, signal
analysis, finance, healthcare, and defense, making it the leading
paradigm in AI research and practical applications alike (Pacal
2024).

The Used Algorithms

In this study, five of the most prominent Convolutional Neural
Network (CNN) architectures were utilized, each renowned for its
high efficiency and foundational role in image classification tasks.
These models are particularly well-suited for this project due to
their proven success in domains requiring nuanced visual analysis,
such as medical imaging and precision agriculture. Their selection
was based not only on their widespread popularity in recent aca-
demic research but also on their validated ability to extract deep,
hierarchical features from complex images with remarkable accu-
racy and efficiency. By leveraging these powerful architectures,
which have set benchmarks on large-scale datasets, this work aims
to build upon their established feature extraction capabilities to
achieve robust classification of maize leaf diseases.

The VGG16 model, developed at the University of Oxford by
Simonyan and Zisserman (Pacal and Attallah 2025), is considered
a classical and highly influential architecture in the field of com-
puter vision. Its defining characteristic is a simple yet profound
design homogeneity: it is constructed by stacking multiple con-
volutional layers that exclusively use small (3×3) kernels. This
strategy demonstrated that a significant increase in network depth,
rather than the use of larger, more complex filters, was a key to
improving performance. These convolutional blocks are system-
atically followed by max-pooling layers, which reduce the spatial
dimensions of the feature maps, thereby decreasing computational
load and creating invariance to the position of features. Despite
its structural elegance, VGG16 is a very large model containing
approximately 138 million parameters, the majority of which are in
its final fully connected layers. This large capacity allows it to learn
rich representations but also makes it computationally intensive
and prone to overfitting, establishing it as a critical benchmark for
both performance and resource management in deep learning (Si-
monyan and Zisserman 2014). The structural layout of the VGG16
model is illustrated in Figure 2.

ResNet (Residual Network), developed by the Microsoft Re-
search team led by He et al., is a revolutionary architecture that
won the ILSVRC 2015 competition and fundamentally changed
the landscape of deep learning (He et al. 2016a,b). Its primary moti-
vation was to solve the "degradation" problem, a counter-intuitive
phenomenon where adding more layers to a deep network would
cause its accuracy to saturate and then rapidly decline. ResNet
masterfully addresses this challenge with the ingenious concept
of "residual connections," also known as "skip connections." This
structure allows the input of a layer block to be added directly
to its output, effectively creating a shortcut. By doing this, the
network is reframed to learn the residual mapping rather than the
entire underlying transformation. If a certain block is not useful,
the network can easily learn to make the residual zero, essentially
"skipping" the block by turning it into an identity mapping, thus

Figure 2 VGG16 Architecture Used for Corn Leaf Disease
Classification

preventing performance loss.
The ResNet-50 model, used in this research, is a 50-layer ver-

sion of the ResNet architecture. It uses an even more efficient
"bottleneck" structure in its residual block, applying 1x1, 3x3, and
another 1x1 convolutional filters in the residual block to compress
then provide dimension back. There is sufficient depth for good
feature extraction while reducing the parameter count to approxi-
mately 25 million, which is considerably lower than earlier models
like VGG16. Because the ResNet architecture is very successful
at solving the degradation problem, ResNet-50 enables training
of much deeper networks. It also serves as a baseline model that
provides state-of-the-art accuracy and significant computational
cost savings during training and inference for applicable computer
vision tasks. The ResNet-50 architecture is shown as Figure 3.

Figure 3 Block Diagram of the ResNet-50 Processing Pipeline

DenseNet121, introduced by Huang et al. (Huang et al. 2017a,b;
Kaur et al. 2024), represents a significant evolution in network ar-
chitecture designed to maximize information flow between layers.
The model is built upon the core concept of "dense connectivity," a
powerful alternative to the residual connections found in ResNet.
Instead of summing features, DenseNet concatenates them. In this
paradigm, each layer receives the feature maps from all preceding
layers as its input, creating a direct and deep channel for infor-
mation transfer. This architecture ensures that all features, from
the earliest low-level ones to more complex high-level ones, are
accessible throughout the network.

This dense connectivity yields several critical advantages.
Firstly, it strongly encourages feature reuse, which makes the
model highly parameter-efficient; since each layer has access to a
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"collective knowledge" of all prior features, it only needs to learn
a small number of new feature maps. Secondly, this enhanced
information flow significantly alleviates the vanishing gradient
problem, as gradients can propagate more directly to earlier layers
during training. Consequently, DenseNets are not only easier to
train but also achieve state-of-the-art performance with consider-
ably fewer parameters compared to models of similar depth. The
fundamental building block of this efficient architecture, the dense
block, is illustrated in Figure 4.

Figure 4 Schematic Diagram of a Dense Block and its Transition
Layer

The InceptionV3 model, developed by Szegedy et al. at Google,
is a highly influential architecture and a significant iteration within
the GoogLeNet family (Szegedy et al. 2016a,b). It was designed
to tackle the dual challenges of improving classification accuracy
while drastically reducing the computational burden of very deep
networks. The model’s ingenuity lies in its core component, the "In-
ception Module," which employs a "split, transform, merge" strat-
egy. Instead of choosing a single convolution kernel size for a layer,
an Inception module performs multiple convolution operations
with different kernel sizes (e.g., 1x1, 3x3, 5x5) and a max-pooling
operation in parallel within the same block. This allows the net-
work to capture visual features at multiple scales simultaneously,
from fine-grained details to more abstract, larger patterns.

A key to its computational efficiency is the extensive use of
1x1 convolutions as bottleneck layers to reduce the feature map
dimensions before the more expensive 3x3 and 5x5 convolutions
are applied. InceptionV3 further refines this concept by factorizing
larger convolutions into smaller, stacked ones (e.g., replacing a
5x5 filter with two consecutive 3x3 filters), which reduces parame-
ters and increases non-linearity. The outputs from these parallel
paths are then concatenated into a single, rich feature map. This
sophisticated design enables InceptionV3 to build a deep and wide
network with high efficiency. The intricate parallel structure of the
Inception module, which is fundamental to the model’s success, is
detailed in Figure 5.

MobileNetV2, developed by Google, was purposefully engi-
neered to deliver high efficiency for platforms with limited com-
putational and power resources, such as smartphones, drones, and
IoT devices (Sandler et al. 2018a,b). Its architecture is designed
to minimize model size and computational cost with minimal im-
pact on accuracy, relying on two innovative core concepts. The
first is the foundational technique of "Depthwise Separable Con-
volutions," which replaces standard convolutions by splitting the
process into two stages: a depthwise convolution that applies a
single filter to each input channel for spatial filtering, followed by a
pointwise convolution (a 1x1 filter) to combine the channel outputs.
This factorization dramatically reduces the number of parameters
and the computational load. The second and primary innova-

Figure 5 Structural Flowchart of the InceptionV3 Transfer
Learning Model

tion in MobileNetV2 is the "Inverted Residual" block. Contrary
to traditional residual blocks that have a wide-to-narrow-to-wide
structure, the inverted residual block starts with a narrow, low-
dimensional input, expands it to a high-dimensional space, applies
the efficient depthwise convolution, and then projects it back to
a narrow representation. The skip connection links the narrow
bottleneck layers, which improves gradient flow and allows for the
construction of deeper, more effective networks. This combination
of techniques makes MobileNetV2 an ideal solution for real-world
applications like smart agriculture, where it can perform tasks such
as on-the-spot disease detection on a mobile device or image pro-
cessing on an autonomous drone, perfectly balancing performance
with the constraints of on-device deployment.

RESULTS AND DISCUSSION

Experimental Design
The experiments conducted in this study were executed on a sys-
tem running Windows 11, equipped with an Intel Core i7 processor,
32 GB of DDR5 RAM, and an NVIDIA GeForce RTX 4060 Laptop
GPU. All models were developed using the PyTorch framework,
leveraging NVIDIA’s CUDA technology for accelerated compu-
tation. Training and evaluation of the models were performed
within a unified experimental environment, utilizing identical sets
of hyperparameters to ensure consistency and enable a rigorous,
systematic comparison among the models.

Performance Metrics
The development of robust intelligent systems for modern agricul-
tural applications hinges on the rigorous assessment of machine
learning models. To this end, a comprehensive performance bench-
mark was conducted to determine the most effective architecture
for classifying diseases affecting corn leaves. This study lever-
aged the well-known PlantVillage dataset to train and validate
five of the most influential and powerful convolutional neural
network (CNN) architectures: VGG16, ResNet-50, DenseNet121,
InceptionV3, and MobileNetV2. The objective was to systemati-
cally evaluate these established models in a specific, high-impact
agricultural context, thereby providing clear insights into their
practical effectiveness.

To ensure a direct and unbiased comparison, a controlled ex-
perimental environment was established where all five models
were trained under identical conditions, using the same dataset
partitions and hyperparameters. The subsequent evaluation was
based on a suite of standard quantitative metrics to holistically
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measure performance. This included Accuracy, which provides a
top-level view of the overall percentage of correct classifications.
To gain deeper insight, Precision was used to measure the relia-
bility of positive predictions, while Recall assessed the model’s
ability to identify all true positive cases of a given disease. Finally,
the F1-Score was employed to provide a balanced assessment by
calculating the harmonic mean of precision and recall, a partic-
ularly crucial metric when dealing with potentially imbalanced
class distributions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Results
The results demonstrated that the DenseNet121 model delivered
excellent performance compared to the other models, achieving a
test accuracy of 96.02%, precision of 95.67%, recall of 95.90%, and
an F1-score of 95.78%. This performance reflects DenseNet121’s
ability to leverage dense connectivity between layers, resulting in
effective and accurate discrimination among the disease classes.
In second place was the InceptionV3 model, which attained a test
accuracy of 94.47%, precision of 93.50%, recall of 93.18%, and an F1-
score of 93.33%, highlighting its high efficiency in analyzing multi-
scale features within the images. The ResNet-50 model achieved a
test accuracy of 90.85%, while the VGG16 model showed relatively
lower performance with an accuracy of 89.98%.MobileNetV2, de-
spite having fewer parameters, showed competitive results with
an accuracy of 92.10%, making it suitable for applications requir-
ing speed and resource efficiency, such as deployment on mobile
devices. The following table (Table 2) summarizes the comparative
performance of the models used in this study:

■ Table 2 Performance Comparison of Deep Learning Models

Model Accuracy Precision Recall F1-Score

DenseNet121 96.02% 95.67% 95.90% 95.78%

InceptionV3 94.47% 93.50% 93.18% 93.33%

MobileNetV2 92.10% 91.23% 91.45% 91.34%

ResNet-50 90.85% 89.88% 89.30% 89.59%

VGG16 89.98% 88.70% 88.95% 88.82%

Figure 6 displays the confusion matrix for the DenseNet121
model, which demonstrated the best performance among all tested
models with an accuracy of 96.02%. This visualization provides a
detailed breakdown of the model’s classification results, showing
the distribution of correct and incorrect predictions for each class.
Analyzing the confusion matrix in Figure 6 allows for a deeper
understanding of the specific strengths and weaknesses of the
DenseNet121 model’s predictive capabilities.

Figure 6 Confusion Matrix of the DenseNet121 Model

To further analyze the performance of the top-performing
DenseNet121 model, a detailed classification report is presented
in Table 3. The table shows the precision, recall, and F1-score for
each individual class: Cercospora/Gray Leaf Spot, Common Rust,
Northern Leaf Blight, and Healthy. The model demonstrates ex-
ceptional performance in identifying ’Healthy’ leaves, achieving
a perfect recall of 1.00 and an F1-score of 0.98, which indicates
that no healthy leaves were misclassified. Similarly, the ’Common
Rust’ class is identified with high confidence, posting an F1-score
of 0.96. The most challenging category for the model appears to
be ’Cercospora/Gray Leaf Spot,’ with an F1-score of 0.78. Overall,
the weighted average F1-score of 0.92 confirms the model’s robust
and effective classification capability across the different corn leaf
diseases.

■ Table 3 Detailed Classification Report for the DenseNet121
Model

Class Precision Recall F1-Score Support

Gray Leaf Spot 0.83 0.74 0.78 72

Common Rust 0.98 0.95 0.96 182

Northern Leaf Blight 0.84 0.88 0.86 150

Healthy 0.97 1.00 0.98 175

Weighted Avg 0.92 0.92 0.92 579

Accuracy 0.92 579

Discussion
The results of this study highlight the effectiveness of deep learn-
ing models in accurately classifying corn leaf diseases, confirming
the significant role of artificial intelligence in supporting smart agri-
culture and automating plant disease diagnosis. The DenseNet121
model outperformed the other models, achieving an accuracy of
96.02% and an F1-score of 95.78%, reflecting an excellent balance
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between detection rate and error reduction. This superior perfor-
mance is attributed to the DenseNet architecture, which relies on
dense connections that enhance feature reuse and facilitate learn-
ing of precise representations of disease patterns. The following
table summarizes the performance of the five models used in this
study:

The second-best performing model was InceptionV3, which
achieved an accuracy of 94.47% and an F1-Score of 93.33%. This
strong performance can be attributed to its multi-scale architec-
tural design, enabling it to extract visual features at various levels.
However, its relatively high computational resource consumption
may limit its suitability for deployment in resource-constrained
environments. MobileNetV2 demonstrated good performance
with an accuracy of 92.10% and an F1-Score of 91.34%. Due to
its lightweight architecture and efficient inference capabilities, it
is considered a suitable choice for mobile and embedded appli-
cations, although this comes at the cost of somewhat reduced
accuracy compared to larger models.

ResNet-50 achieved a moderate performance, with an accuracy
of 90.85% and an F1-Score of 89.59%, indicating a fair ability to
discriminate between classes. Meanwhile, VGG16 ranked low-
est in performance, with an accuracy of 89.98% and an F1-Score
of 88.82%, which aligns with its simpler architecture lacking ad-
vanced techniques such as residual connections or multi-scale
feature extraction. These results suggest that selecting an appro-
priate model should not rely solely on accuracy metrics but also
consider factors such as model size, inference speed, and deploy-
ment efficiency in real-world settings, such as agricultural fields
or mobile applications. For future work, it is recommended to
expand the study by incorporating data from real field environ-
ments and diverse imaging conditions (e.g., varying lighting and
backgrounds). Additionally, integrating Explainable AI techniques
would enhance model transparency and build user trust in model
decisions. Evaluating the model across multiple corn varieties and
geographic regions is also advised to improve generalizability in
broader agricultural contexts.

CONCLUSION

This study concluded that deep learning–based models, particu-
larly the proposed hybrid model, serve as effective and accurate
tools for classifying corn leaf diseases from images. The hybrid
model demonstrated superior performance compared to conven-
tional models, underscoring the importance of designing network
architectures that combine depth with dense internal connections
to extract fine-grained features. The results also highlighted that
balancing accuracy with computational efficiency is a critical factor
when selecting an optimal model for smart agriculture applica-
tions, especially in resource-constrained environments. The study
affirms that integrating artificial intelligence techniques into the
agricultural sector represents a pivotal step towards the digital
transformation of plant disease management, contributing to im-
proved crop quality and enhanced early response to disease chal-
lenges. Accordingly, it is recommended to continue developing
these models and expanding their testing to encompass real-world
scenarios and varying imaging conditions, with an emphasis on
adopting explainable AI tools to increase trustworthiness and fa-
cilitate adoption by agricultural practitioners.
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A Comparative Analysis of Convolutional Neural
Network Architectures for Breast Cancer Classification
from Mammograms
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ABSTRACT Breast cancer represents a significant global health challenge, ranking as one of the most prevalent malignancies
among women. Early and accurate diagnosis through medical imaging is paramount for improving patient outcomes, with mammography
serving as the gold standard for screening. However, the interpretation of mammograms can be challenging and subject to inter-observer
variability. This study aims to comparatively evaluate the performance and computational efficiency of four prominent Convolutional Neural
Network (CNN) architectures for the automated classification of breast cancer from mammogram images. Utilizing a publicly available
dataset comprising 3,383 mammogram images classified as either Benign or Malignant, we trained and evaluated four distinct models:
InceptionV3, DenseNet169, InceptionV4, and ResNet50. The results demonstrate that the DenseNet169 architecture achieved superior
performance across all evaluated metrics, attaining the highest accuracy (73.33%), precision (70.45%), recall (67.83%), and F1-score
(68.60%). Notably, DenseNet169 also exhibited the highest computational efficiency, featuring the lowest parameter count (12.49M)
among the tested models. These findings suggest that DenseNet169 offers an optimal balance between diagnostic accuracy and model
efficiency, positioning it as a highly promising candidate for integration into clinical decision support systems to aid radiologists in the early
detection of breast cancer.

KEYWORDS

Breast cancer
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Mammography
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tion
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INTRODUCTION

Cancer represents one of the most complex and devastating dis-
eases confronting modern medicine (García Megías et al. 2025). It
is fundamentally a pathological condition characterized by the un-
controlled division and proliferation of the body’s cells (Siqueira
et al. 2024; Rezaei et al. 2025). Normally, healthy cells grow, di-
vide, and die according to the body’s needs. However, cancerous
cells arise from genetic mutations that disrupt this regulated cycle,
proliferating incessantly to form masses known as "tumors" (Sirvi
et al. 2025; Yousefnia 2024). These tumors not only damage the
tissue in which they are located but can also spread to other parts
of the body via the blood or lymphatic system, a process known as
"metastasis," thereby impairing the function of vital organs (Zuo
et al. 2024; Li et al. 2025). According to World Health Organization
(WHO) data, cancer is a leading cause of death globally, respon-
sible for millions of fatalities each year (Mohanti et al. 2025; Lin
and Park 2024). In the fight against this global health problem,
understanding the biology of the disease is as crucial as achieving
an early and accurate diagnosis in order to increase survival rates
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and enhance treatment success (Mundel et al. 2023; Aggarwal and
Bagri 2025).

Within this broad spectrum of cancer, breast cancer is distin-
guished as the most prevalent type, particularly among women
(Kim et al. 2025; Xiong et al. 2025). Millions of women worldwide
are diagnosed with breast cancer annually, and it is the leading
cause of cancer-related mortality in this demographic. Breast can-
cer, which can develop due to a multitude of risk factors including
genetic predisposition, hormonal factors, lifestyle, and environ-
mental influences, is a disease that is highly responsive to treat-
ment when detected at an early stage (Obeagu and Obeagu 2024).
Early diagnosis ensures the tumor is identified when it is still small
and has not spread to surrounding tissues (Kiani et al. 2025; Al-
shawwa et al. 2024; Begum et al. 2024). This enables the use of less
invasive treatment methods and elevates five-year survival rates
to over 90% (Katsika et al. 2024; Trentham-Dietz et al. 2024). There-
fore, raising public awareness and expanding regular screening
programs are regarded as the most effective strategies for reducing
the mortality of the disease.

Among the various imaging techniques used for the early de-
tection of breast cancer, mammography is the most common and
effective method, widely recognized as the "gold standard" (Chan-
dra et al. 2025). Mammography is a radiological technique that
provides detailed imaging of the breast using low-dose X-rays
(Dhamija et al. 2025). This method allows for the detection of
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masses too small to be palpated, architectural distortions, and es-
pecially microcalcification clusters (small calcium deposits), which
can be an early sign of cancer (Al-Balas et al. 2024). However, the in-
terpretation of mammography is a complex and subjective process
that relies heavily on the radiologist’s experience and diligence
(Nicosia et al. 2024). Factors such as high workload, fatigue, or
overlooking subtle details in the image can lead to false-negative
(missing a cancer) or false-positive (suspecting cancer where there
is none) results (Mousa et al. 2024; Bahrami et al. 2025). This sit-
uation can lead to unnecessary biopsies, anxiety for patients, or
delays in treatment. These challenges have necessitated the devel-
opment of a more objective, rapid, and reliable decision support
system for the analysis of mammographic images.

In recent years, advancements in artificial intelligence (AI), par-
ticularly in the field of deep learning, have instigated a revolution
in medicine, especially in medical image analysis (Pacal and At-
tallah 2025; Pacal 2025). Convolutional Neural Networks (CNNs),
owing to their superior capability to learn hierarchical features
from visual data, have demonstrated performance comparable to,
and in some cases, superior to that of human experts in analyzing
radiological images (Pacal et al. 2025; İnce et al. 2025; Bayram et al.
2025). CNN-based models can automatically learn the subtle and
complex discriminative features of normal tissue patterns versus
benign and malignant lesions from mammograms. Within the
scope of this study, the potential of this technology has been lever-
aged for the detection of breast cancer from mammography images
(Lubbad et al. 2024b; Kurtulus et al. 2024). To this end, four differ-
ent deep learning (DL) architectures with proven success in the
literature ResNet50, DenseNet169, InceptionV3, and InceptionV4
were utilized to classify mammogram images as benign (0) or ma-
lignant (1) (Cakmak et al. 2024; Ozdemir et al. 2025). The objective
is to compare the performance of these models to identify the most
effective AI approach that can serve as a robust second-opinion
and decision support tool for radiologists (Cakmak and Pacal 2025;
Zeynalov et al. 2025; Lubbad et al. 2024a).

The field of medicine is undergoing a transformative evolution
with the integration of AI, particularly its subfields of DL and
machine learning (ML) (Obuchowicz et al. 2024; Koçak et al. 2025).
These technologies offer significant advancements across a wide
range of applications, from the early diagnosis of diseases and the
development of personalized treatment protocols to drug discov-
ery and the analysis of complex biological data (Li et al. 2024; Islam
et al. 2024). Medical imaging, in particular, holds immense poten-
tial due to the ability of AI algorithms to process vast amounts of
data and detect patterns imperceptible to the human eye (Chambi
et al. 2025; Meng et al. 2024). In this context, Sarvi et al. compared
Mamba-based models (VMamba and Vim) with CNN and Vision
Transformer (ViT) architectures, demonstrating that under lim-
ited data conditions, Mamba architectures more effectively capture
long-range dependencies, achieving a 1.98% increase in mean AUC
and a 5.0% increase in accuracy (Nasiri-Sarvi et al. 2024). Gagliardi
et al., on the other hand, developed a system that concurrently
addresses both classification and segmentation tasks, investigat-
ing models that simultaneously provide radiologists with a tumor
mask and diagnostic information. They identified models that
achieved high-performance metrics on the BUSI dataset, including
an accuracy exceeding 90%, 92% precision, 90% recall, and a 90%
F1 score (Gagliardi et al. 2024).

In studies conducted in the realm of breast cancer diagnosis, it
is found that hybrid methods and sophisticated CNN architectures
have shown promising outcomes. Abhisheka et al. pointed out
that in isolation DL and ML techniques are commonly inadequate,

and they proposed the Hybrid Breast Cancer Prediction System
(HBCPS). This model fuses deep features obtained with ResNet50
with handcrafted features, such as Histogram of Oriented Gradi-
ents (HOG), and performs classification using a Support Vector
Machine (SVM). The HBCPS model proved to be effective on the
BUSI data set, achieving 89.02% accuracy and a 0.8717 AUC score
(Abhisheka et al. 2025). Similarly, Latha et al. used the EfficientNet-
B7 architecture and innovative data augmentation techniques to
address some accuracy concerns discovered with minority classes
and applied appropriate XAI techniques (like Grad-CAM) to pro-
mote explainability of the model. Using their methods, the authors
achieved classification accuracy of 99.14%, far surpassing the re-
sults of previous approaches (Latha et al. 2024). Thus, the findings
of these studies suggest hybrid modelling and deep CNN archi-
tectures with the support of explainable AI, can be successful in
classifying breast cancer.

On the other hand, efforts in the literature to enhance segmenta-
tion accuracy and improve computational efficiency are also promi-
nent. Umer et al. proposed a U-shaped autoencoder-based CNN
model equipped with a triple decoder featuring multi-attention
mechanisms. They showed that this model, with its ability to cap-
ture multi-scale spatial features, achieved Dice scores of 90.45%
and 89.13% on the UDIAT and BUSI datasets, respectively (Umer
et al. 2024). Cai et al. developed the SC-Unext model, based on
Unext and inspired by cellular apoptosis and division processes,
with the aim of reducing computational complexity and model
parameter load. This model achieved a Dice score of 75.29% and
an accuracy of 97.09% on the BUSI dataset, and was also noted
for its fast inference time in CPU environments (Cai et al. 2024).
Such efficient and lightweight models are considered significant
steps toward increasing usability in clinical applications. Thus,
this diversity in the literature indicates that AI-based approaches
point to a promising future for breast cancer diagnosis, both in
terms of accuracy and operational efficiency.

MATERIALS AND METHODS

Dataset
In this study, the publicly available "Breast Cancer Detection"
dataset, published by Hayder17 on the Kaggle platform, was uti-
lized for the purpose of detecting breast cancer from mammog-
raphy images (Kaggle 2025). The dataset consists of pathologi-
cally confirmed mammography images divided into two primary
classes: benign lesions (labeled as class 0) and malignant lesions
(labeled as class 1). Containing a total of 3383 images, with 2225 be-
ing benign and 1158 malignant, this rich dataset provides a robust
foundation for evaluating the ability of the developed DL models
to learn the subtle structural and textural differences between these
two critical classes.

To ensure that the model development and evaluation processes
are standardized and reproducible, the dataset, comprising 3383
images, was carefully partitioned into training, validation, and
testing subsets. This split was performed by allocating 70% of
the total dataset (2367 samples) for training, 15% (506 samples)
for validation, and the remaining 15% (510 samples) for testing to
independently evaluate the final performance of the model. These
proportions are intended to ensure the model is trained with suf-
ficient data while also allowing its generalization capability to
be reliably measured without overfitting. Furthermore, care was
taken to ensure that the class distribution in each subset reflected
the proportions of the original dataset. Accordingly, the training
set was composed of 1557 benign (0) and 810 malignant (1) sam-
ples; the validation set contained 333 benign (0) and 173 malignant
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(1) samples; and the test set included 335 benign (0) and 175 ma-
lignant (1) samples. The partitioning of the dataset and the class
distributions are also detailed in Figure 1.

(a)

(b)

(c)

Figure 1 Statistical distribution and partitioning of the "Breast
Cancer Detection" dataset. (a) Number of samples for the Benign
and Malignant classes in the complete dataset. (b) Class
distribution within the training (70%), validation (15%), and
testing (15%) subsets. (c) The proportional split of the dataset into
training, validation, and test sets.

To better visualize the structure of the dataset and the types
of images it contains, representative mammography images for
each class (benign and malignant) are presented in Figure 2. As
illustrated in Figure 2, benign lesions tend to exhibit smooth and
well-defined margins, whereas malignant lesions are more likely
to display features such as irregular, indistinct, or spiculated (star-
like) borders, higher density, and suspicious microcalcification
clusters. In addition to these apparent morphological differences
between the classes, these examples also highlight the challenges
inherent in mammography, such as low contrast, the potential for
dense breast tissue to obscure underlying lesions, and the ambi-
guities created by overlapping tissue layers. These visual repre-
sentations aid in understanding the fundamental morphological
features that our models must learn and differentiate, and they
offer insight into the diversity of the dataset.

Data Augmentation
This study employed a dynamic data augmentation pipeline dur-
ing training to enhance model generalization and mitigate the risk
of overfitting, a common challenge associated with limited med-
ical image datasets. The core strategies of this pipeline, applied

Figure 2 Representative mammogram images illustrating the
Benign and Malignant classes.

randomly to each image on-the-fly, are as follows: First, through a
"Random Resized Crop" operation, each image was cropped to a
random scale of 8% to 100% of its original area with a variable as-
pect ratio (0.75 to 1.33), and subsequently resized to 224x224 pixels
using a random interpolation method. This was complemented by
a random horizontal flip, applied with a 50% probability. To intro-
duce chromatic variance, "Color Jitter" was utilized to randomly
alter the brightness, contrast, saturation, and hue of the images by
a factor of 0.4. Notably, vertical flipping was deliberately excluded
from the augmentation strategy.

The purpose of this on-the-fly methodology was to present
the model with a diverse and continuously varying stream of
data. This approach is designed to discourage the model from
memorizing specific artifacts of the training set, thereby fostering
a more robust and reliable performance on previously unseen data
Wang et al. (2024); Mumuni et al. (2024).

Model Architectures
In order to tackle the problem of automatically classifying breast
cancer using mammographic images, this research utilized several
important deep CNN architectures. Since there is a common limita-
tion of having little labelled data for the medical domain, we opted
to utilize a transfer learning approach. In particular, we are able to
utilize the excellent feature representations provided by the pre-
trained models from the very large ImageNet database and transfer
that knowledge learned onto the small mammogram classification
task. The primary motive for this was to speed up the conver-
gence of the model, improve generalization and reduce overfitting.
Therefore, in this transfer learning approach, we loaded the initial
weights of each architecture to the pre-trained ImageNet version,
and we then fine-tuned each model on the breast mammography
image dataset.

The first two models we wish to assess are called ResNet50
and DenseNet169, which are both architectures based on differ-
ent philosophies. ResNet50 is a 50-layer network developed by
He et al, and is based on the concept of residual learning. Resid-
ual learning allows ResNet50 to prevent the vanishing gradient
problem with a very deep neural network. In ResNet50, the van-
ishing gradient problem is overcome by the addition of shortcut
connections into its layers, or what they call "residual blocks" and
is considered a solid baseline for classification tasks (He et al. 2015).
DenseNet169, a 169-layer architecture proposed by Huang et al
is based on dense connectivity. In this design, each layer receives
inputs from all previous layers, making it easier to propagate fea-
tures and reuse features. It is a unique architecture because of the
improvement in parameter efficiency and assumption of improved
gradient flow during training (Huang et al. 2017).

The study included two architectures from the Inception family
of Google for their capacity to capture visual information at multi-
ple scales. InceptionV3 uses "Inception modules" which process
the input from parallel paths of different sizes of convolutional
filters (e.g. 1x1, 3x3, 5x5) and pooling layers. This means that the
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output of these paths can be concatenated, allowing the network
to learn complex invariances at different resolutions, in addition
to optimizations that included the use of factorized convolutions
just to name a few. InceptionV4 builds off from InceptionV3 and
establishes a more consistent and simple modular structure. It can
be thought of as a refinement of the Inception concept, and within
InceptionV4, there are a deeper number of blocks that have been
more optimized with the interest to achieve greater performance
and greater computational efficiency (Szegedy et al. 2016).

The strategic selection of these four distinct CNNs ResNet50,
DenseNet169, InceptionV3, and InceptionV4 was intended to pro-
vide a comprehensive comparison for the task of differentiating
between benign, malignant, and normal tissue in mammograms.
The rationale is that the unique architectural designs and feature-
learning strategies of each model are expected to yield valuable
insights into which approach is most effective for this complex
medical imaging problem. Through a rigorous analysis of their
performance across various evaluation metrics, this study aims
to contribute to the growing body of literature on developing au-
tomated, deep learning-based systems for the early diagnosis of
breast cancer.

Evaluation Metrics

The evaluation of DL models is a fundamental step, indispensable
for quantifying their efficacy, justifying methodological choices,
and enabling informed, data-centric decision-making. Perfor-
mance criteria serve multiple critical functions, including gauging
the effectiveness of classification models, guiding their optimiza-
tion, identifying potential errors or biases within the dataset, facili-
tating comparative analysis between different architectures, and
diagnosing issues like overfitting. In the context of this study on
breast cancer classification, we have adopted a set of standard
evaluation metrics that are well-established and widely accepted
within the scientific literature.

The key metrics used in this project i.e. Accuracy, Precision,
Recall, and the F1-score have significant importance in scientific
fields apart from deep learning. Accuracy is a general measure of
performance based on the number of correctly classified instances
compared to the total instances given. Precision is simply defined
as true positives divided by the number of true positives and false
positives and measures the reliability of the model’s positive pre-
dictions. The higher the precision score, the less the false positives.
Recall, or sensitivity, measures whether the model identified all
actual positive cases, acting as a measure of completeness. The
F1 score is simply the harmonic mean of precision and recall, pro-
viding one single metric that weights the trade-off between false
positives and false negatives. These definitions are also supported
by their mathematical definitions:

Accuracy =
Number of correct predictions

Number of total predictions
(1)

Precision =
True Positive

True Positive + False Positive
(2)

Recall =
True Positive

True Positive + False Negative
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

RESULTS AND DISCUSSION

In this study, the performance and computational complexity of
four different CNN architectures were comparatively evaluated
for the classification of breast cancer from mammography images.
The obtained results are summarized in Table 1. Upon examination
of the evaluation metrics, it is clearly evident that the DenseNet169
architecture exhibited superior performance compared to all other
models. DenseNet169 achieved the highest score with an accuracy
of 73.33%. This model also attained the most successful results
with 70.45% precision, 67.83% recall, and a 68.60% F1-score. Subse-
quently, although the InceptionV3 and ResNet50 models presented
identical accuracy rates of 72.16%, they exhibited different profiles
in their precision and recall metrics. ResNet50 offered higher pre-
cision (69.39% versus 68.96%), while InceptionV3 showed higher
recall (66.52% versus 65.02%). This suggests that the two mod-
els have different error profiles. Among the tested models, the
InceptionV4 architecture exhibited the lowest performance with
an accuracy of 70.20%. These findings, based solely on classifi-
cation performance, establish DenseNet169 as the most suitable
architecture for this task.

■ Table 1 Performance and Complexity of CNN Models for
Breast Mammography Image Classification

Model Acc. Prec. Rec. F1 Params (M) GFLOPs

DenseNet 169 73.33 70.45 67.83 68.60 12.49 6.72

Inception V3 72.16 68.96 66.52 67.22 21.79 5.67

ResNet 50 72.16 69.39 65.02 65.79 23.51 8.26

Inception V4 70.20 66.60 65.58 65.96 41.15 12.25

Beyond performance metrics, the complexity and computa-
tional efficiency of the models play a critical role in evaluating
their potential for clinical application. In this context, the most
striking finding is that DenseNet169, which demonstrated the high-
est performance, also possesses the lowest number of parameters
among the tested models, with 12.49 million. This indicates that
the principles of feature reuse and dense connectivity, which form
the foundation of the DenseNet architecture, enable the learning
of richer and more discriminative features with fewer parame-
ters. In stark contrast, InceptionV4, which exhibited the lowest
performance, is the most complex and computationally expensive
model with 41.15 million parameters and 12.24 GFLOPs. This
result strongly suggests that in deep learning, a larger and more
complex model does not always translate to better performance;
in fact, for this specific dataset, it may lead to overfitting or opti-
mization challenges, thereby degrading performance. ResNet50
(23.51M parameters) and InceptionV3 (21.79M parameters) are
positioned at a moderate level in terms of complexity, offering a
balance between performance and efficiency.

Discussing the results from a clinical perspective reveals the
practical value of the models. In medical diagnosis, particularly
for life-threatening conditions like cancer, the balance between
recall and precision metrics is of vital importance. High recall
reduces the likelihood of the model missing malignant cases (false
negatives), while high precision prevents the application of un-
necessary anxiety and invasive procedures, such as biopsies, to a
patient by incorrectly diagnosing a benign case as malignant (false
positives). The fact that DenseNet169 achieved the highest scores
in both recall and precision metrics indicates that it establishes this
critical balance most effectively. Furthermore, its low parameter
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count and reasonable GFLOPs value (6.71) facilitate its deploy-
ment on systems requiring fewer hardware resources and offer
faster inference times, making its integration into the radiologist’s
workflow practical. Consequently, DenseNet169 emerges as the
most promising candidate for development as a decision support
system for breast cancer diagnosis, not only for its superior di-
agnostic accuracy but also for its efficiency and balanced error
profile. To analyze the classification capabilities of the InceptionV3
model, which exhibited the highest performance, in more detail,
its confusion matrix is presented in Figure 3.

Figure 3 Confusion Matrix of the InceptionV3 Model for Breast
Mammography Image Classification.

CONCLUSION

This study aimed to comparatively evaluate the performance and
efficiency of four widely-used CNN architectures InceptionV3,
DenseNet169, InceptionV4, and ResNet50 for the classification
of breast cancer from mammography images. The results ob-
tained unequivocally established that the DenseNet169 model was
markedly superior to all other architectures in terms of both diag-
nostic accuracy and computational efficiency. DenseNet169 exhib-
ited the highest performance with an accuracy of 73.33%, while
also proving to be the most lightweight model with 12.49 million
parameters. This finding, particularly when contrasted with the
lowest performance exhibited by the most complex model, Incep-
tionV4, reinforces the hypothesis that increased model complexity
does not invariably lead to better outcomes for this specific task.

Consequently, it is concluded that the principles of dense con-
nectivity and feature reuse inherent in the DenseNet architecture
provide a significant advantage in breast cancer classification by en-
abling the learning of more effective features with fewer resources.
While the findings of this study are promising, the limitations of
the utilized dataset must be acknowledged. Future work should
validate the performance of the DenseNet169 model on larger and
more diverse clinical datasets, investigate the impact of different
preprocessing and data augmentation techniques, and integrate
Explainable Artificial Intelligence (XAI) methods to enhance model
interpretability. This research constitutes an important step toward
the development of both high-accuracy and efficient AI models
and highlights the potential for such systems to be integrated into
clinical practice as a reliable decision support tool for radiologists
in the future.
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