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ABSTRACT Breast cancer is one of the most common malignancies among women globally, and it constitutes a significant public
health problem in terms of morbidity and mortality. Since early-stage diagnosis significantly increases treatment success and survival rates,
effective screening and diagnostic methods are of great importance. Various imaging modalities, such as mammography, ultrasonography
(US), and magnetic resonance imaging, play a critical role in the detection of breast cancer. Ultrasound, in particular, is a valuable imaging
method due to its non-ionizing nature, its accessibility, and its role as a complementary tool in dense breast tissue. In recent years,
deep learning (DL) algorithms, particularly Convolutional Neural Networks (CNNs), have exhibited promising results in medical image
analysis, especially in cancer detection. The aim of this research is to investigate and compare the four most common CNN architectures, sound

ResNet50, DenseNet169, InceptionV3 and InceptionV4, for breast ultrasound images to classify breast cancer automatically. We have Image classifica-
utilized publicly available breast ultrasound image datasets for the models and reported results in metrics of accuracy, precision, sensitivity, tion

and F1-score. The InceptionV3 architecture had the best performance across the models examined with metrics of accuracy: 96.67%,
precision: 96.55%, sensitivity: 96.38%, and F1-score: 96.41%. It was also noticed that the DenseNet169 model performed similarly to the
InceptionV3 model but had substantially fewer parameters. The results of this study suggest that the InceptionV3 DL architecture may
have significant potential for accuracy in the classification of cancer from breast ultrasound images and can contribute to the development
of computer aided diagnosis systems for the early detection of breast cancer.
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INTRODUCTION

Breast cancer is one of the leading cancers that affect women’s
health around the world and is the abnormal and unregulated
growth of mammary epithelial cells (Kim et al. 2025; Xiong et al.
2025). The origin of breast cancer is a multifactorial process medi-
ated by genetic susceptibility, hormones, lifestyle, and environmen-
tal factors (Obeagu and Obeagu 2024). Given that the prognosis
for treatment response and survival rate improve drastically if the
cancer is found at an early stage, better screening and diagnostic

for complementary or alternative forms of imaging (Abeelh and
AbuAbeileh 2024).

Ultrasonography is a valuable component in evaluating breast
lesions, primarily due to its non-ionizing nature, availability, af-
fordability, and real-time images (lacob ef al. 2024). Specifically, it
has advantages for the evaluation of breast lesions, especially in de-
termining whether suspicious findings on mammography are cys-
tic or solid masses, and facilitates biopsy procedures. For women
with dense breast parenchyma, ultrasonography is essentially an

strategies are crucial. Therefore, it is important to study medical
imaging techniques that are the least invasive way to characterize
abnormal changes in the breast (Kiani et al. 2025; Alshawwa et al.
2024; Begum ef al. 2024). Breast cancer screening programs have re-
lied on mammography as the definitive tool of choice (Katsika et al.
2024; Trentham-Dietz et al. 2024). However, mammography may
lack diagnostic sensitivity particularly with women with dense
breast tissue and in women who are younger. This raises the need
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adjunct that improves mammographic diagnostic performance
and provides clarity in graphically characterizing lesions (Gordon
et al. 2025). However, ultrasonography has disadvantages, includ-
ing operator-dependency that introduces inter-observer variability
in the detection and interpretation of lesions. Additionally, ultra-
sonography is limited in its ability to detect microcalcifications.
Research has been conducted to evaluate new ways to provide
more objective and standardized analysis of ultrasound images
(Vogel-Minea et al. 2025; Rana et al. 2024).

Artificial intelligence (AI), and deep learning (DL) algorithms
in particular, have generated paradigm shifting advances in med-
ical image analysis in recent years (Pacal et al. 2025; Pacal and
Attallah 2025a). DL architectures, such as convolutional neural
networks (CNNs), have shown significant potential in many med-
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ical specialties, including radiology and pathology, due to their
ability to automatically learn complex patterns and hierarchical
features from massive image datasets (Ozdemir et al. 2025; Lubbad
et al. 2024b; Pacal 2025). With respect to breast cancer, DL models
have demonstrated excellent performance to achieve high levels
of accuracy in the detection, classification, and segmentation of
suspicious lesions from mammograms, ultrasound images, and
magnetic resonance scans (Ince et al. 2025; Lubbad et al. 2024a). In
this paper, we plan to train several CNN algorithms (e.g. ResNet50,
DenseNet169, InceptionV3, InceptionV4) with breast ultrasound
image dataset publicly available online and then analyze and com-
pare the results to determine their potential to assist clinicians in
breast cancer diagnosis (Pacal and Attallah 2025b; Cakmak et al.
2024; Bayram et al. 2025). The hope is that by performing a DL
based analysis of ultrasound images we can assist with the early
diagnosis process and also improve diagnostic accuracy (Cakmak
and Pacal 2025; Zeynalov et al. 2025; Kurtulus et al. 2024).

The field of medicine is undergoing a transformative evolution
through the integration of Al, particularly its sub-disciplines of DL
and machine learning (ML) (Obuchowicz et al. 2024; Kogak et al.
2025). These technologies offer revolutionary advancements across
a broad spectrum, ranging from the early diagnosis of diseases to
the development of personalized treatment protocols, from drug
discovery to the analysis of complex biological data (Li et al. 2024;
Islam et al. 2024). Medical imaging, in particular, holds immense
potential due to the capacity of Al algorithms to detect subtle
patterns and anomalies imperceptible to the human eye and to
rapidly process and interpret large volumes of data (Chambi et al.
2025; Meng et al. 2024). Disciplines such as radiology, pathology,
and oncology are rapidly adopting these innovations with the
promise of enhancing diagnostic accuracy, optimizing workflows,
and ultimately improving patient outcomes. In the management of
prevalent and serious health issues like breast cancer, the combina-
tion of Al with accessible imaging modalities such as ultrasound is
opening promising avenues for early-stage detection and effective
treatment strategies (Rajkumar et al. 2024).

In studies on breast cancer classification and segmentation, var-
ious Al approaches have gained prominence. Abhisheka et al.,
highlighting the importance of breast cancer in the healthcare
sector, noted the insufficiency of traditional ML or DL models
alone and, accordingly, proposed the Hybrid Breast Cancer Pre-
diction System (HBCPS) model. This system combines deep CNN
features (obtained via ResNet50) with handcrafted features (His-
togram of Oriented Gradients - HOG) and uses a Support Vector
Machine (SVM) for classification. The system also incorporates
a Block-Matching and 3D filtering (BM3D) filter to reduce noise
in Breast Ultrasound (BUS) images, achieving satisfactory results
on the BUSI dataset, such as 89.02% accuracy and an AUC of
0.8717 (Abhisheka et al. 2025). Similarly, Latha et al. (2024) com-
bined a scalable CNN architecture, EfficientNet-B7, with advanced
data augmentation techniques to address low accuracy in minor-
ity classes, particularly malignant tumors. They also integrated
eXplainable AI (XAI) techniques like Grad-CAM to enhance the in-
terpretability of the model’s predictions. With this approach, they
achieved a high classification accuracy of 99.14%, significantly
outperforming existing CNN-based approaches. These studies
underscore the potential of both hybrid modeling and the integra-
tion of advanced CNN architectures with XAI techniques in breast
cancer classification.

Other notable contributions in the literature have focused on
improving segmentation accuracy and computational efficiency.
Umer et al. (2024) proposed a U-shaped autoencoder-based CNN
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model featuring a multi-attention mechanism and a triple decoder,
focusing on capturing multi-scale spatial features and highlight-
ing the tumor region, particularly in BC segmentation from U/S
images. Their proposed model achieved Dice scores of 90.45% and
89.13% on the UDIAT and BUSI datasets, respectively. On the other
hand, Cai et al. (2024), as a solution to the challenges of high com-
putational complexity and large model parameters in existing seg-
mentation methods, developed the SC-Unext model. This model,
based on the Unext network and inspired by the mechanisms of
cellular apoptosis and division, not only improved segmentation
performance but also reduced model parameters and computa-
tional resource consumption, achieving a 75.29% Dice score and
97.09% accuracy on the BUSI dataset; it also demonstrated fast in-
ference times on CPUs. These studies demonstrate the importance
of developing not only complex architectures but also efficient and
lightweight models, especially for segmentation tasks.

Finally, the comparison of next-generation architectures and the
development of holistic systems for clinical application also hold a
significant place on the research agenda. Cai et al. (2024) compared
Mamba-based models (VMamba and Vim) with traditional CNNs
and Vision Transformers (ViTs), demonstrating that some Mamba-
based architectures offer statistically significant performance im-
provements, particularly due to their ability to capture long-range
dependencies in limited data. For instance, on dataset B, Mamba-
based models were reported to provide an improvement of 1.98%
in mean AUC and 5.0% in mean Accuracy. Nasiri-Sarvi et al. (2024)
adopted an approach aimed at presenting the radiologist with
both the tumor mask and its classification. They examined dif-
ferent DL models and identified the best-performing one, which
achieved over 90% accuracy, 92% precision, 90% sensitivity, and a
90% F1-score on the BUSI dataset. This study emphasizes that DL
architectures are effective in the classification and segmentation
of ultrasound breast images and could be used in clinical trials
in the near future. Such comparative studies and proposals for
integrated systems further solidify the role of Al in breast cancer
diagnosis and pave the way for its clinical adaptation (Gagliardi
et al. 2024).

MATERIALS AND METHODS

Dataset

In this research, a publicly available dataset, the "Breast Ultrasound
Images Dataset", was used to classify and analyze breast ultra-
sound images. This dataset was made available through the Kaggle
platform by Sabah Saraki (Kaggle 2025), and contains ultrasound
images which demonstrate different appearances of breast cancer.
The dataset contains samples of ultrasound images grouped into
three main classes based on pathologically confirmed diagnoses of
benign tumors, malignant tumors, and normal breast tissue images.
This variety gives a solid ground for evaluating the capability of
the DL models to distinguish other tissue structures and lesion
types.

In order to ensure a standardized and reproducible model de-
velopment and evaluation process, the dataset, comprising a total
of 780 samples (437 benign, 210 malignant, and 133 normal), was
meticulously partitioned into training, validation, and testing sub-
sets. This partitioning allocated 70% of the data (545 samples) to
the training set, 15% (115 samples) to the validation set, and the re-
maining 15% (120 samples) to the test set. These proportions were
selected to ensure the model is trained on sufficient data, while
simultaneously allowing for a reliable assessment of its generaliza-
tion capability and mitigating the risk of overfitting. Furthermore,
a stratified sampling approach was employed to ensure that the
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class distribution within each subset precisely mirrors that of the
original dataset, a crucial step to prevent the model from develop-
ing a bias towards any particular class. Consequently, the training
set was composed of 305 benign, 147 malignant, and 93 normal
samples; the validation set contained 65 benign, 31 malignant, and
19 normal samples; and the test set consisted of 67 benign, 32 ma-
lignant, and 21 normal samples. This dataset partitioning is also
illustrated in Figure 1.

Validation

Train

Figure 1 Distribution of the Breast Ultrasound Images Dataset into
Training, Validation, and Test Sets (70%-15%-15%)

To better visualize the structure of the dataset and the types of
images it contains, representative ultrasound images from each
class (benign, malignant, and normal) are presented in Figure 2.
As can be seen in Figure 2, benign lesions generally present with
regular borders and a homogeneous internal echo, whereas ma-
lignant lesions may exhibit more irregular margins, spiculated
extensions, and heterogeneous internal structures. Normal breast
tissue images, in turn, show typical fibroglandular and adipose tis-
sue patterns. These examples reflect not only the visual differences
between the classes but also the inherent challenges of ultrasound
imaging, such as speckle noise and low contrast. These visual
representations help in understanding the fundamental morpho-
logical features that our models must learn and differentiate, and
they provide an insight into the diversity of the dataset.

Walignant Beningn

Normal

Figure 2 Sample Ultrasound Images Illustrating the Three Classes
in the Breast Cancer Dataset: Benign, Malignant, and Normal.

Data Augmentation

To enhance the generalization capability of the DL models and to
mitigate the problem of overfitting, a frequent challenge in limited
datasets such as medical images, various on-the-fly data augmen-
tation techniques were integrated into the training process in this
study. Initially, as the focus was on the classification task, the
mask.png files, which were included in the original dataset for
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segmentation purposes, were excluded from the analysis. During
the training phase, the primary augmentation methods randomly
applied to each image were as follows: images were first subjected
to a "Random Resized Crop," where they were cropped to a ran-
dom size with a scale ranging from 8% to 100% of the original area
(scale: [0.08, 1.0]) and an aspect ratio between 0.75 and 1.33 (ratio:
[0.75, 1.3333333333333333]), and subsequently resized to 224x224
pixels (img-size: 224) using a random interpolation method (train
interpolation: random). Additionally, random horizontal flipping
was applied to each image with a 50% probability (hflip: 0.5). For
color-based augmentations, random alterations were made to the
color properties of the images, including brightness, contrast, sat-
uration, and hue, with a factor of 0.4 (color-jitter: 0.4). Vertical
flipping was not utilized in this study (vflip: 0.0). These on-the-fly
augmentation strategies were intended to ensure that the model
encounters differentiated data samples during each training epoch,
thereby preventing it from becoming overly dependent on the spe-
cific features of the training data and aiming for a more robust and
reliable performance on unseen data (Wang ef al. 2024; Mumuni
et al. 2024).

Model Architectures

In this study, for the automatic classification of breast cancer from
breast ultrasound images, well-established and widely recognized
deep CNN architectures from the field of computer vision were uti-
lized. In domains such as medical imaging, where the amount of
labeled data is often limited, adopting a transfer learning approach
rather than training a model from scratch presents significant ad-
vantages. Transfer learning enables the transfer of the rich feature
extraction capabilities of models pre-trained on large-scale, general-
purpose datasets (e.g., ImageNet) to a more specific and smaller
target dataset. This approach aims to achieve faster model con-
vergence, improved generalization performance, and a reduced
risk of overfitting, particularly when working with limited data.
Within the scope of this study, all selected CNN architectures were
initialized with weights pre-trained on the ImageNet dataset and
were subsequently subjected to a fine-tuning process on our target
dataset comprising breast ultrasound images.

First, the ResNet50 architecture, based on the principle of resid-
ual learning, was employed. Developed by He et al., ResNet archi-
tectures addressed the vanishing gradient problem encountered
in the training of very deep networks through the use of "residual
blocks" containing "shortcut connections,” which allow the input
to be passed directly to subsequent layers. ResNet50, a 50-layer
deep implementation of this structure, is frequently preferred as
a robust baseline model for image classification tasks (He et al.
2016). Another architecture of choice was DenseNet169. Proposed
by Huang et al., Densely Connected Networks (DenseNets) intro-
duce a "dense connectivity" structure where each layer receives
the feature maps from all preceding layers as input and passes on
its own feature maps to all subsequent layers. This architecture
strengthens feature propagation, encourages feature reuse, reduces
the number of parameters, and improves gradient flow, making it
particularly prominent for its parameter efficiency; DenseNet169
is a 169-layer version of this architecture (Huang et al. 2017).

The study also evaluated two models from the Inception ar-
chitecture family, developed by Google, which are capable of cap-
turing features at multiple scales simultaneously. InceptionV3,
through its "Inception modules," applies convolutional filters of
different sizes (e.g., 1x1, 3x3, 5x5) and pooling operations in par-
allel at the same layer level and concatenates their outputs. This
structure allows the model to analyze complex visual patterns at
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various scales, while performance is optimized through techniques
such as factorizing larger convolutions into smaller ones and using
auxiliary classifiers. InceptionV4, as an advancement over Incep-
tionV3, aims to deliver improvements in both performance and
computational efficiency by presenting the Inception modules in
a more uniform and simplified structure. This model is charac-
terized by deeper and more optimized Inception blocks (Szegedy
et al. 2016).

These four distinct CNN architectures (ResNet50, DenseNet169,
InceptionV3, and InceptionV4) were selected to compare their
effectiveness in the task of differentiating between benign, malig-
nant, and normal tissue classes in breast ultrasound images. The
distinct architectural approaches and feature extraction strategies
of each model are expected to approach this challenging medical
image classification problem from different perspectives, thereby
providing valuable insights into which architecture or architectural
features are more suitable for this specific task. The performance of
the models is carefully analyzed using various evaluation metrics,
and the results contribute to the literature on the development of
deep learning-based automated systems for the early diagnosis of
breast cancer.

Evaluation Metrics

Assessing how well DL models work is a vital process to assess
their usefulness, provide rationale for relevant decisions, and sup-
port data-driven decisions. Performance evaluation criteria can
fulfill many important roles such as assessing the effectiveness of
a classification models, helping them to be optimized, revealing
errors or biases in the data, comparing models, and detecting over-
fitting. This paper focuses specifically on performance metrics for
breast cancer classification, at the same time, we have decided to
utilize standard evaluation criteria that are clearly entrenched in
the academic literature.

The basic metrics that are used in this project (accuracy, preci-
sion, recall, and F1-score) are important in not only DL but other
areas. Accuracy can be defined as the number of correctly classi-
fied instances over the total number of instances, giving insight
into the performance as a whole. Precision (true positives / (true
positives + false positives)) tells how reliable the model is in classi-
fying positive instances; if the model has a high precision, it means
there are few if any false positives. Recall tells us about the number
of actual positives correctly identified the measure of complete-
ness. The Fl-score is defined as the harmonic mean of precision
and recall, thus making it a single measure of performance that
balances the trade-off between false positives and false negatives.
While these definitions may seem complicated, they can also be
defined mathematically:

Number of correct predictions
Number of total predictions

)

Accuracy =

Precision — True Positive 2
" True Positive + False Positive

True Positive
Recall =
eca True Positive 4 False Negative ®)

Precision x Recall

F =2 -
1 % Precision + Recall

4)
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RESULTS AND DISCUSSION

In this section, we present and analyze the performance results
of the different CNN architectures we evaluated for the purposes
of classifying breast ultrasound images. We compared the per-
formance of the ResNet50, DenseNet169, InceptionV3 and Incep-
tionV4 models used in this work using some fundamental classi-
fication performance metrics: Accuracy, Precision, Recall, and F1
score - as well as Quantification metrics including the number of
parameters (Params M) and GFLOPs (Giga Floating Point Opera-
tions per Second), which estimate the complexity of models and
computational resources required for both model training and in-
ference. We consider that exploring such metrics is vital to gaining
insight into models” diagnostic performance and important use
cases.

The results obtained are summarized in Table 1. Table 1 illus-
trates the performance metrics reached by each model on the test
dataset, along with information on model complexity. These data
show the strengths and weaknesses of the various architectures
and demonstrate the trade-off between performance and computa-
tional expense.

Table 1 Comparative Performance and Complexity of CNN
Models for Breast Ultrasound Image Classification

Model Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs
Inception V3 96.67 96.55 96.38 96.41 21.79 5.67
DenseNet 169 94.17 92.71 95.43 93.91 12.49 6.72
Inception V4 94.17 92.01 95.97 93.60 41.15 12.25
ResNet 50 90.83 90.29 89.08 89.10 23.51 8.26

The data from Table 1 clearly illustrates that the InceptionV3
model showed the best performance. With an accuracy of 96.67%,
precision of 96.55%, sensitivity of 96.38% and F1-score of 96.41%,
InceptionV3 was the most capable of successfully classifying breast
ultrasound images. It is expected that InceptionV3 performs so
well because of the architecture’s ability to capture features at
different scales and learn complex patterns. Also worth noting,
is that InceptionV3 (21.79 million parameters, 5.6719 GFLOPs)
delivered the best results from a model complexity standpoint
not because it was the most complex model. Having the lowest
GFLOPs value means that it was performing at a high level while
using a relatively low amount of computational cost.

The DenseNet169 model also achieved highly competitive re-
sults. With 94.17% accuracy, 92.71% precision, 95.43% sensitivity,
and a 93.91% F1-score, it exhibited the second-best performance
after InceptionV3. The most striking feature of DenseNet169 is
its model complexity; with 12.49 million parameters, it has the
lowest parameter count among the evaluated models, and with
6.7169 GFLOPs, it has the second-lowest GFLOPs value after In-
ceptionV3 (there may be an error in the table, as the GFLOPs
for InceptionV3 is lower). This indicates that, as a result of its
dense connectivity structure that enhances feature propagation
and increases parameter efficiency, DenseNet169 offers a favorable
performance-to-efficiency balance. DenseNet169 could be an at-
tractive alternative, especially for scenarios where computational
resources are constrained.

The InceptionV4 model, despite having an accuracy rate of
94.17% similar to DenseNet169, along with 92.01% precision,
95.97% sensitivity, and a 93.60% F1-score, is the model with the
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highest complexity and computational cost among those evalu-
ated, at 41.15 million parameters and 12.2450 GFLOPs. The fact
that it did not surpass InceptionV3, despite having a deeper and
more complex structure, suggests that for this specific task and
dataset, increased complexity does not invariably translate to bet-
ter performance. ResNet50, in contrast, exhibited a more modest
performance compared to the other three models, with 90.83%
accuracy and an 89.10% Fl-score. Although it is a strong base-
line model, it lagged behind the other more modern and complex
architectures used in this study. It possesses a moderate level of
complexity with 23.51 million parameters and 8.2634 GFLOPs.

The findings of this study indicate that the InceptionV3 architec-
ture offers a compelling combination of high diagnostic accuracy
and balanced computational efficiency. In contrast, DenseNet169
presents itself as a potent alternative for resource-constrained envi-
ronments, owing to its lower parameter size and computational
cost. These findings represent a major contribution to the choice of
DL architectures in the context of developing automated solutions
for the early diagnosis of breast cancer, and possibilities for future
involvement of real-world clinical applications. In all cases, the
choice of architecture must be assessed relative to the intended
application’s requirements (e.g., maximum accuracy versus fast
inference time). To further assess the classification performance of
the best performing InceptionV3, its confusion matrix is shown in
Figure 3.
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Figure 3 Confusion Matrix of the InceptionV3 Model for Breast
Ultrasound Image Classification.

CONCLUSION

In this study, the performance of four different deep Convolutional
Neural Network (CNN) architectures (ResNet50, DenseNet169,
InceptionV3, and InceptionV4) was comprehensively compared
and evaluated for the classification of breast cancer from breast
ultrasound (US) images. The findings clearly demonstrated that
the InceptionV3 model exhibited the highest classification perfor-
mance compared to the other evaluated architectures, with supe-
rior metric values of 96.67% accuracy, 96.55% precision, 96.38%
sensitivity, and a 96.41% F1-score. This high performance can
be attributed to the Inception architecture’s ability to effectively
capture multi-scale features and learn complex visual patterns,
while it is also noteworthy that the model offers a relatively effi-
cient computational cost with 21.79 million parameters and 5.6719
GFLOPs.
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The DenseNet169 architecture also stood out as a promising
alternative for resource-constrained environments, drawing atten-
tion with its 94.17% accuracy rate and particularly its low parame-
ter counts of 12.49 million. While InceptionV4 could not surpass
InceptionV3 despite its high complexity, ResNet50 yielded more
modest results. This study demonstrates that InceptionV3 is a
strong candidate for the classification of breast US images in terms
of both high diagnostic accuracy and acceptable computational effi-
ciency. The obtained results offer valuable insights for the selection
of appropriate DL architectures for the development of automated
systems for the early diagnosis of breast cancer and underscore
the potential for the integration of these technologies into future
clinical applications. Validating these models on larger and more
diverse datasets, investigating the impact of different data aug-
mentation strategies and fine-tuning techniques, and integrating
eXplainable AI (XAI) methods to enhance model interpretability
represent critical next steps for advancing research in this field.
Ultimately, such deep learning-based approaches have great po-
tential to support the decision-making processes of radiologists,
thereby improving the accuracy and efficiency of breast cancer
diagnosis.
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