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ABSTRACT This study explores the trade-off between diagnostic performance and computational efficiency in deep learning models
for the classification of breast cancer in ultrasound images. To this end, we evaluate three contemporary CNN architectures EfficientNetB7,
EfficientNetV2-Small, and RexNet-200 in a multiple comparative study with standardized performance and complexity metrics. Our
evaluations provide evidence that all three models achieved an identical high accuracy of 95.00%, but there were sizeable differences in
the computational resources required to achieve that accuracy. RexNet-200 demonstrated tremendous computational efficiency, achieving
identical performance with the least amount of resources (13.81M parameters; 3.05 GFLOPs) required compared to EfficientNetB7 which
is much more computationally intensive. An examination of the confusion matrix for the models enhances the models clinical validity, as
there are no malignant lesions misclassified as normal. Ultimately, our study clearly demonstrates that diagnostic accuracy is not a good
metric for practical clinical deployment. RexNet-200, by representing high performance, with minimal resource utilization, is the most
pragmatic and clinically applicable model, creating the opportunity to develop scalable and accessible CAD systems in resource-limited
settings.
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INTRODUCTION

Breast cancer represents one of the most prevalent malignancies
among women globally, characterized by the uncontrolled prolif-
eration of epithelial cells within the breast tissue (Kim et al. 2025;
Xiong et al. 2025). The etiology of the disease is rooted in a complex
interplay of genetic predisposition with hormonal, environmental,
and lifestyle factors (Obeagu and Obeagu 2024). As early detection
significantly enhances treatment success and survival rates, the
development of effective screening and diagnostic methodologies
is of paramount importance. In this context, non-invasive medi-
cal imaging modalities assume a fundamental role in identifying
pathological changes within the tissue (Kiani et al. 2025; Alshawwa
et al. 2024; Begum et al. 2024). Although mammography is the
cornerstone of standard screening, its diagnostic efficacy can be
diminished, particularly in women with dense breast tissue, under-
scoring the need for supplementary imaging techniques (Katsika
et al. 2024; Trentham-Dietz et al. 2024; Abeelh and AbuAbeileh
2024).

Owing to advantages such as its non-ionizing nature,
widespread accessibility, and cost-effectiveness, ultrasonography
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is regarded as a valuable instrument for evaluating breast lesions
(Iacob et al. 2024). It provides distinct benefits in clarifying suspi-
cious mammographic findings, differentiating between cystic and
solid masses, and guiding biopsy procedures, enhancing the char-
acterization of lesions in women with dense parenchyma (Gordon
et al. 2025). Nevertheless, its utility is constrained by certain limi-
tations, including operator dependency, inter-observer variability
in interpretation, and an inadequate capacity to detect microcalci-
fications. These challenges necessitate the development of more
objective and standardized methodologies for the interpretation of
ultrasound images (Vogel-Minea et al. 2025; Rana et al. 2024).

Recently, artificial intelligence (AI), and specifically deep learn-
ing (DL) techniques, have prompted a paradigm shift in the analy-
sis of medical images (Karaman et al. 2023; Pacal et al. 2025; Pacal
and Attallah 2025a; Zeynalov et al. 2025). Architectures such as
Convolutional Neural Networks (CNNs) are delivering ground-
breaking results in fields like radiology and pathology, attributed
to their capacity to autonomously extract hierarchical features
from large-scale datasets (Pacal 2024; Ozdemir et al. 2025; Lub-
bad et al. 2024b). In the context of breast cancer, DL models have
demonstrated high success rates in the detection, classification,
and segmentation of lesions across various imaging modalities,
including mammography, ultrasound, and MRI (Pacal and Kılı-
carslan 2023; COŞKUN et al. 2023; İnce et al. 2025; Lubbad et al.
2024a).
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The present study aims to enhance the effectiveness and accu-
racy of early breast cancer diagnosis through DL-based analysis of
ultrasound images (Pacal and Attallah 2025b; Cakmak et al. 2024;
Kurtulus et al. 2024; Bayram et al. 2025; Pacal 2025). Accordingly,
a comparative performance evaluation is conducted by training
three modern CNN architectures EfficientNetB7, EfficientNetv2-
Small, and RexNet-200 on a publicly available breast ultrasound
dataset. The ultimate objective of this research is to identify the
architecture that offers the highest efficiency and performance for
this specific diagnostic task (Pacal 2022; Cakmak and Pacal 2025).

The field of medicine is undergoing a profound transforma-
tion through the integration of artificial intelligence (AI) and its
sub-disciplines, machine learning (ML) and deep learning (DL)
(Obuchowicz et al. 2024; Koçak et al. 2025). These technologies
present groundbreaking opportunities across a broad spectrum,
from the early diagnosis of diseases to the personalization of treat-
ment protocols and from drug discovery to the decryption of com-
plex biological data (Li et al. 2024; Islam et al. 2024). The domain
of medical imaging, in particular, holds significant potential due
to the capacity of AI algorithms to detect subtle patterns beyond
human perception and to rapidly analyze vast volumes of data
(Chambi et al. 2025; Meng et al. 2024). Disciplines such as radiology,
pathology, and oncology are swiftly adopting AI-powered systems
for their potential to enhance diagnostic accuracy and improve pa-
tient outcomes. In the management of prevalent health issues like
breast cancer, the fusion of AI with accessible imaging modalities
such as ultrasound (US) opens new horizons for advancing early
detection capabilities (Rajkumar et al. 2024).

Current research in the literature is focused on both develop-
ing integrated clinical decision support systems for breast cancer
diagnosis and enhancing model performance through hybrid ap-
proaches. For instance, Gagliardi et al. proposed a holistic system
that provides radiologists with both a segmentation mask and a
classification result, reporting clinically valuable outcomes on the
BUSI dataset with over 90% accuracy, 92% precision, and 90% re-
call (Gagliardi et al. 2024). In a different approach, Abhisheka et al.
achieved an accuracy of 89.02% and an AUC of 0.8717 with a hy-
brid model (HBCPS) that combines deep learning (ResNet50) and
handcrafted (HOG) features, using an SVM as the classifier (Ab-
hisheka et al. 2025). Along similar lines, Latha et al. leveraged an
EfficientNet-B7 architecture augmented with advanced data aug-
mentation and interpretability (XAI) techniques like Grad-CAM,
attaining a superior classification accuracy of 99.14%, particularly
in recognizing minority classes (Latha et al. 2024).

Other lines of investigation are directed towards exploring
segmentation performance, computational efficiency, and the po-
tential offered by next-generation architectures like Mamba. In
this context, Umer et al. focused on the segmentation task with
a U-shaped autoencoder featuring a multi-attention mechanism,
achieving high Dice scores of 90.45% and 89.13% on the UDIAT
and BUSI datasets, respectively (Umer et al. 2024). With the objec-
tive of reducing computational cost, Cai et al. developed SC-Unext,
a lightweight architecture, demonstrating the importance of model
efficiency with 97.09% accuracy and a 75.29% Dice score (Cai et al.
2024). Finally, Sarvi et al. revealed that Mamba-based architectures
can deliver significant performance gains over traditional CNNs
and Transformers up to a 1.98% increase in AUC and 5.0% in accu-
racy by better capturing long-range dependencies in limited data
scenarios (Nasiri-Sarvi et al. 2024). These collective efforts indicate
that the field is in a state of continuous evolution towards more
accurate, efficient, and innovative models.

MATERIALS AND METHODS

Dataset
For this study, we utilized the publicly available dataset "Breast
Ultrasound Images Dataset" provided by sabahesaraki on Kaggle,
for classifying breast ultrasound (US) images (Kaggle 2025). This
dataset contains pathologically proven breast lesions with three
basic classes of benign, malignant, and normal breast tissue. The
heterogenous dataset serves as a valuable resource to evaluate
deep learning models’ ability to differentiate tissues with different
morphologies and lesion types.

To ensure standardization and reproducibility in the model de-
velopment and evaluation phases, the collection of 780 images (437
benign, 210 malignant, 133 normal) was methodically partitioned
into training, validation, and testing subsets. This division allo-
cated 70% of the collection (545 images) for model training, 15%
(115 images) for the validation process, and the remaining 15%
(120 images) for the test phase to impartially assess final model
performance. This strategic partitioning aims to facilitate model
training on sufficient data while reliably measuring generalization
capabilities and mitigating the risk of overfitting. Furthermore,
potential model bias towards any specific class was addressed by
ensuring that the class distribution within each subset mirrored
the proportions of the original dataset. Accordingly, the training,
validation, and test sets were structured to contain (305B, 147M,
93N), (65B, 31M, 19N), and (67B, 32M, 21N) samples, respectively.
A schematic of this dataset partitioning is also visualized in Figure
1.

Figure 1 The Breast Ultrasound Images dataset was divided into
three subsets: 70% for training, 15% for validation, and 15% for
testing.

To elucidate the composition of the dataset and the visual dis-
tinctions among its classes, representative ultrasound images for
each category (benign, malignant, and normal) are presented in
Figure 2. Upon examination, benign lesions typically exhibit well-
defined contours and a homogeneous internal structure. In con-
trast, malignant lesions often display morphological characteristics
such as irregular borders, spiculated margins, and a heterogeneous
internal echo pattern. Normal breast tissue, for its part, reflects
characteristic fibroglandular and adipose tissue patterns. These ex-
amples not only highlight the morphological differences between
the classes but also expose the inherent challenges associated with
ultrasound imaging, such as speckle noise and low contrast. This
visual presentation provides a valuable context for understand-
ing the key distinguishing features that the models must learn to
identify, and for appreciating the diversity encapsulated within
the dataset.
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Figure 2 Sample ultrasound images from the dataset belonging to
the benign, malignant, and normal classes.

Data Augmentation

To enhance the generalization performance of the deep learning
models and mitigate the risk of overfitting a prevalent challenge in
limited datasets typical of medical imaging this study incorporated
a suite of on-the-fly data augmentation techniques into the training
pipeline. As the focus of the task was on classification, the seg-
mentation masks (mask.png) included in the original dataset were
excluded from the analysis. The primary augmentation strategies
applied to each image during the training loop included the fol-
lowing: images were first subjected to a "Random Resized Crop,"
where they were randomly cropped to a scale of 8% to 100% of
the original area with an aspect ratio between 0.75 and 1.33, and
subsequently resized to 224x224 pixels using a random interpola-
tion method. Additionally, a random horizontal flip was applied
with a 50% probability. To introduce color diversity, "Color Jitter"
was employed, randomly altering the brightness, contrast, and
saturation of the images by a factor of 0.4. Vertical flipping was not
utilized in this work. This on-the-fly augmentation methodology
ensures that the model encounters diverse variations of the data
in each training epoch. This approach is designed to prevent the
model from becoming overly dependent on the specific artifacts
of the training set, thereby fostering a more robust and reliable
performance on unseen data (Wang et al. 2024; Mumuni et al. 2024).

The Used Algorithms

In this research, we use deep Convolutional Neural Network
(CNN) architectures, which have been shown to be effective in
the computer vision research literature, to automatically classify
breast ultrasound (US) images. In fields like medical imaging
where there tends to be a small amount of labelled data, the ad-
vantage of transfer learning - as opposed to training a model from
scratch - is considerable. By using transfer learning in particular
fields, it is possible to leverage the feature extraction ability of
models pre-trained on large data sets like ImageNet, and then chal-
lenge those features in a smaller and more specific target dataset.
The use of a transfer learning approach is also intended to facilitate
quicker convergence, better generalization, and a reduced chance
of overfitting. For our project, all the CNN architectures we used
were loaded with pre-trained weights from a model trained on
ImageNet, and then we fine-tuned the models on our target breast
ultrasound dataset.

The first set of architectures considered includes the Efficient-
Net family. EfficientNet families of architectures changed how
researchers think about model scaling. Tan and Le proposed these

architectures that scale model dimensions (Depth, Width, and Reso-
lution) in a systematic way using what they call ’compound scaling’
rather than just scaling in a random way. This principle allows for
higher efficiency and accuracy using fewer parameters. Efficient-
NetB7, being a large and performant member of the family and the
largest and most performant of the versions (that was scaled in this
compound fashion) stands as a baseline for image classification
tasks. The second architecture considered, EfficientNetV2-S, is a
next-generation architecture that builds on the first and offers both
faster training and a more efficient parameter.zip. It uses both
MBConv and Fused-MBConv blocks and improved its training
strategy to optimally achieve a good balance of speed and accuracy,
especially for the S (Small) version (Tan and Le 2019, 2021).

RexNet-200, another modern architecture that we evaluated,
was created for addressing the ’representational bottleneck’ prob-
lem raised by standard designs. Rank eXpansion Networks
(RexNets), as introduced by Han et al., are based on the idea that in
standard convolutional blocks, channel narrowing-and-widening
operations can lose information. RexNets work around this issue
by providing blocks for networks to preserve and build the ’rank’
of inter-layer channel representations, or the amount of unique in-
formation. This construction can facilitate a fuller and more varied
flow of features between the layers, and thus increase the model’s
representational capabilities. RexNet-200, which we used in the
study, is a higher-performing type of this architecture (with a 2.0
scaling factor) (Han et al. 2021).

Three distinct and contemporary CNN architectures Efficient-
NetB7, EfficientNetV2-S, and RexNet-200 were chosen to compare
their respective performance in classifying breast ultrasound im-
age classes as benign, malignant, and normal. Each model has its
own design philosophies and contributions, including compound
scaling, training optimization, and overcoming representational
bottlenecks, which provides a broad view of the variability in CNN
approaches to this complex medical classification task. The models
are evaluated using comprehensive metrics to derive meaningful
conclusions regarding the most suitable architecture for this task.

Performance Metrics

Measuring the performance of deep learning models is a critical
step for assessing the practical value of these models, justifying
methodological choices, and allowing data-driven choices. Relying
on performance measures can have different purposes, such as
evaluating the effectiveness of a model, guiding the optimization
process, guarding against data errors or biases, allowing for an ob-
jective comparison between models, and identifying phenomena
such as overfitting. The current paper adopts conventional eval-
uation criteria that are established and accepted in the academic
literature that is specific to the issue of breast cancer classification.

The primary metrics employed within this project accuracy, pre-
cision, recall, and F1-score are indicators of central importance not
only in deep learning evaluations but also in other disciplines. Ac-
curacy, which offers an initial impression of general performance,
is the ratio of correct predictions to the total number of instances.
Precision, which measures the exactness of positive predictions,
reflects the reliability of the model’s positive labeling; high pre-
cision implies a low false positive rate. Recall, which measures
the model’s ability to identify all actual positive cases, indicates
its success in detecting events that should not be missed. The
F1-score, which combines these two metrics into a single measure,
is the harmonic mean of precision and recall, serving as a balanced
performance criterion that reflects the trade-off between false posi-
tives and false negatives. Conceptually, these definitions may also
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be formulated through the mathematical expressions presented
below.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

RESULTS AND DISCUSSION

The comparative analysis, as detailed in Table 1, reveals that the
three evaluated architectures each achieved an identical accuracy
of 95.00% in classifying breast ultrasound images. Behind this
uniform accuracy score, however, lie significant divergences in
other performance and complexity metrics. While EfficientNetV2-
Small led in precision at 94.89%, EfficientNetB7 yielded the best
results for recall and F1-score, at 95.38% and 94.41%, respectively.
A striking paradox emerges when these performance data are con-
sidered alongside the computational costs of the models: Efficient-
NetB7, despite possessing some of the highest metrics, is the most
resource-intensive model with 63.79 million parameters and 10.26
GFLOPs. In contrast, RexNet-200 attains the same high accuracy
with only 13.81 million parameters and 3.05 GFLOPs, proving to be
a remarkably efficient alternative that requires approximately 4.6
times fewer parameters and 3.4 times less computational power.

■ Table 1 A Comparison of Performance and Complexity in
CNN Models for Classifying Breast Ultrasound Images

Model Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs

EfficientNetB7 95.00 93.58 95.38 94.41 63.79 10.26

EfficientNetV2-Small 95.00 94.89 93.75 94.28 20.18 5.42

RexNet-200 95.00 93.38 93.75 93.54 13.81 3.05

These findings demonstrate that for the evaluation of modern
deep learning architectures, computational efficiency is a critical
factor alongside diagnostic accuracy. RexNet-200, by achieving
high accuracy with minimal resources, emerges as the most practi-
cal and convenient solution for Computer-Aided Diagnosis (CAD)
systems intended for deployment in resource-constrained clinical
environments or on local devices. With its high precision and bal-
anced efficiency, EfficientNetV2-Small presents a strong option for
scenarios where minimizing false positives is vital. On the other
hand, despite its highest recall rate, the heavy computational bur-
den of EfficientNetB7 significantly limits its scalability and practi-
cality for real-world applications. This work clearly establishes the
potential of efficient and lightweight architectures like RexNet-200
to enable the development of sustainable and accessible systems
for the early diagnosis of breast cancer, without compromising on
accuracy compared to their larger, more complex counterparts.

A detailed breakdown of the classification performance for the
RexNet-200 model is provided in the confusion matrix presented in
Figure 3. The concentration of values along the matrix’s diagonal
axis is an indicator of the model’s success; it correctly classified a
total of 116 samples (64 Benign, 31 Malignant, and 21 Normal). An

analysis of the errors reveals that 2 Benign cases were misclassified
as Malignant, and 1 Malignant case was misclassified as Benign. A
particularly noteworthy finding that reinforces the model’s clinical
reliability is that no errors were made in the ’Normal’ class, and
crucially, no ’Malignant’ case was overlooked as ’Normal’ the most
critical error scenario. This error profile corroborates the robust
performance underlying the model’s high accuracy rate.

Figure 3 RexNet-200 model confusion matrix for breast
ultrasound classification.

CONCLUSION

This study, by comparing three distinct deep learning models for
the classification of breast ultrasound images, has demonstrated
that computational efficiency is a decisive differentiating factor,
even amidst an identical accuracy rate of 95.00%. The results be-
ginning to clearly outline RexNet-200, a model that can know the
diagnostic performance equivalent to a more complex architec-
ture such as EfficientNetB7 according to leading metrics, but that
comes with far less resource usage. Specifically, there is clearly
a large resource-use advantage to the design of this architecture;
the model operated with roughly 4.6 times fewer parameters than
EfficientNetB7 and 3.4 times lower computational demands on the
host system. More importantly, RexNet-200 was confirmed to be
clinically robust based on the confusion matrix analysis, especially
in terms of not misclassifying diagnoses of malignant as normal.

Thus, at minimum, this study provides evidence suggesting
that simply pursuing the highest accuracy metric is not effective for
the development of any future modern Computer-Aided Diagno-
sis (CAD) systems. However, one fundamental change is to move
to architectures that maximize the trade-off between diagnostics ac-
curacy and efficiency. Because of the success of RexNet-200 and the
rest of our study, it is evident that it is possible to develop a system
for the early diagnosis of breast cancer that is high-performance,
scalable, sustainable, and can be used in settings where hardware
resources are limited. There are several reasons why an efficient
CAD model is best for the real world.
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