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ABSTRACT Breast cancer represents a significant global health challenge, ranking as one of the most prevalent malignancies
among women. Early and accurate diagnosis through medical imaging is paramount for improving patient outcomes, with mammography
serving as the gold standard for screening. However, the interpretation of mammograms can be challenging and subject to inter-observer
variability. This study aims to comparatively evaluate the performance and computational efficiency of four prominent Convolutional Neural
Network (CNN) architectures for the automated classification of breast cancer from mammogram images. Utilizing a publicly available
dataset comprising 3,383 mammogram images classified as either Benign or Malignant, we trained and evaluated four distinct models:
InceptionV3, DenseNet169, InceptionV4, and ResNet50. The results demonstrate that the DenseNet169 architecture achieved superior
performance across all evaluated metrics, attaining the highest accuracy (73.33%), precision (70.45%), recall (67.83%), and F1-score tion

(68.60%). Notably, DenseNet169 also exhibited the highest computational efficiency, featuring the lowest parameter count (12.49M) Computer-aided
among the tested models. These findings suggest that DenseNet169 offers an optimal balance between diagnostic accuracy and model . .
efficiency, positioning it as a highly promising candidate for integration into clinical decision support systems to aid radiologists in the early diagnosis (CAD)
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detection of breast cancer.

INTRODUCTION

Cancer represents one of the most complex and devastating dis-
eases confronting modern medicine (Garcia Megias et al. 2025). It
is fundamentally a pathological condition characterized by the un-
controlled division and proliferation of the body’s cells (Siqueira
et al. 2024; Rezaei et al. 2025). Normally, healthy cells grow, di-
vide, and die according to the body’s needs. However, cancerous
cells arise from genetic mutations that disrupt this regulated cycle,
proliferating incessantly to form masses known as "tumors" (Sirvi
et al. 2025; Yousefnia 2024). These tumors not only damage the
tissue in which they are located but can also spread to other parts
of the body via the blood or lymphatic system, a process known as
"metastasis,” thereby impairing the function of vital organs (Zuo
et al. 2024; Li et al. 2025). According to World Health Organization
(WHO) data, cancer is a leading cause of death globally, respon-
sible for millions of fatalities each year (Mohanti ef al. 2025; Lin
and Park 2024). In the fight against this global health problem,
understanding the biology of the disease is as crucial as achieving
an early and accurate diagnosis in order to increase survival rates
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and enhance treatment success (Mundel et al. 2023; Aggarwal and
Bagri 2025).

Within this broad spectrum of cancer, breast cancer is distin-
guished as the most prevalent type, particularly among women
(Kim et al. 2025; Xiong et al. 2025). Millions of women worldwide
are diagnosed with breast cancer annually, and it is the leading
cause of cancer-related mortality in this demographic. Breast can-
cer, which can develop due to a multitude of risk factors including
genetic predisposition, hormonal factors, lifestyle, and environ-
mental influences, is a disease that is highly responsive to treat-
ment when detected at an early stage (Obeagu and Obeagu 2024).
Early diagnosis ensures the tumor is identified when it is still small
and has not spread to surrounding tissues (Kiani et al. 2025; Al-
shawwa et al. 2024; Begum et al. 2024). This enables the use of less
invasive treatment methods and elevates five-year survival rates
to over 90% (Katsika ef al. 2024; Trentham-Dietz et al. 2024). There-
fore, raising public awareness and expanding regular screening
programs are regarded as the most effective strategies for reducing
the mortality of the disease.

Among the various imaging techniques used for the early de-
tection of breast cancer, mammography is the most common and
effective method, widely recognized as the "gold standard" (Chan-
dra et al. 2025). Mammography is a radiological technique that
provides detailed imaging of the breast using low-dose X-rays
(Dhamija et al. 2025). This method allows for the detection of
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masses too small to be palpated, architectural distortions, and es-
pecially microcalcification clusters (small calcium deposits), which
can be an early sign of cancer (Al-Balas et al. 2024). However, the in-
terpretation of mammography is a complex and subjective process
that relies heavily on the radiologist’s experience and diligence
(Nicosia et al. 2024). Factors such as high workload, fatigue, or
overlooking subtle details in the image can lead to false-negative
(missing a cancer) or false-positive (suspecting cancer where there
is none) results (Mousa et al. 2024; Bahrami et al. 2025). This sit-
uation can lead to unnecessary biopsies, anxiety for patients, or
delays in treatment. These challenges have necessitated the devel-
opment of a more objective, rapid, and reliable decision support
system for the analysis of mammographic images.

In recent years, advancements in artificial intelligence (AI), par-
ticularly in the field of deep learning, have instigated a revolution
in medicine, especially in medical image analysis (Pacal and At-
tallah 2025; Pacal 2025). Convolutional Neural Networks (CNNSs),
owing to their superior capability to learn hierarchical features
from visual data, have demonstrated performance comparable to,
and in some cases, superior to that of human experts in analyzing
radiological images (Pacal et al. 2025; Ince et al. 2025; Bayram et al.
2025). CNN-based models can automatically learn the subtle and
complex discriminative features of normal tissue patterns versus
benign and malignant lesions from mammograms. Within the
scope of this study, the potential of this technology has been lever-
aged for the detection of breast cancer from mammography images
(Lubbad et al. 2024b; Kurtulus ef al. 2024). To this end, four differ-
ent deep learning (DL) architectures with proven success in the
literature ResNet50, DenseNet169, InceptionV3, and InceptionV4
were utilized to classify mammogram images as benign (0) or ma-
lignant (1) (Cakmak et al. 2024; Ozdemir et al. 2025). The objective
is to compare the performance of these models to identify the most
effective Al approach that can serve as a robust second-opinion
and decision support tool for radiologists (Cakmak and Pacal 2025;
Zeynalov et al. 2025; Lubbad et al. 2024a).

The field of medicine is undergoing a transformative evolution
with the integration of Al, particularly its subfields of DL and
machine learning (ML) (Obuchowicz et al. 2024; Kogak et al. 2025).
These technologies offer significant advancements across a wide
range of applications, from the early diagnosis of diseases and the
development of personalized treatment protocols to drug discov-
ery and the analysis of complex biological data (Li et al. 2024; Islam
et al. 2024). Medical imaging, in particular, holds immense poten-
tial due to the ability of Al algorithms to process vast amounts of
data and detect patterns imperceptible to the human eye (Chambi
et al. 2025; Meng et al. 2024). In this context, Sarvi et al. compared
Mamba-based models (VMamba and Vim) with CNN and Vision
Transformer (ViT) architectures, demonstrating that under lim-
ited data conditions, Mamba architectures more effectively capture
long-range dependencies, achieving a 1.98% increase in mean AUC
and a 5.0% increase in accuracy (Nasiri-Sarvi et al. 2024). Gagliardi
et al., on the other hand, developed a system that concurrently
addresses both classification and segmentation tasks, investigat-
ing models that simultaneously provide radiologists with a tumor
mask and diagnostic information. They identified models that
achieved high-performance metrics on the BUSI dataset, including
an accuracy exceeding 90%, 92% precision, 90% recall, and a 90%
F1 score (Gagliardi et al. 2024).

In studies conducted in the realm of breast cancer diagnosis, it
is found that hybrid methods and sophisticated CNN architectures
have shown promising outcomes. Abhisheka et al. pointed out
that in isolation DL and ML techniques are commonly inadequate,
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and they proposed the Hybrid Breast Cancer Prediction System
(HBCPS). This model fuses deep features obtained with ResNet50
with handcrafted features, such as Histogram of Oriented Gradi-
ents (HOG), and performs classification using a Support Vector
Machine (SVM). The HBCPS model proved to be effective on the
BUSI data set, achieving 89.02% accuracy and a 0.8717 AUC score
(Abhisheka et al. 2025). Similarly, Latha et al. used the EfficientNet-
B7 architecture and innovative data augmentation techniques to
address some accuracy concerns discovered with minority classes
and applied appropriate XAI techniques (like Grad-CAM) to pro-
mote explainability of the model. Using their methods, the authors
achieved classification accuracy of 99.14%, far surpassing the re-
sults of previous approaches (Latha et al. 2024). Thus, the findings
of these studies suggest hybrid modelling and deep CNN archi-
tectures with the support of explainable Al, can be successful in
classifying breast cancer.

On the other hand, efforts in the literature to enhance segmenta-
tion accuracy and improve computational efficiency are also promi-
nent. Umer et al. proposed a U-shaped autoencoder-based CNN
model equipped with a triple decoder featuring multi-attention
mechanisms. They showed that this model, with its ability to cap-
ture multi-scale spatial features, achieved Dice scores of 90.45%
and 89.13% on the UDIAT and BUSI datasets, respectively (Umer
et al. 2024). Cai et al. developed the SC-Unext model, based on
Unext and inspired by cellular apoptosis and division processes,
with the aim of reducing computational complexity and model
parameter load. This model achieved a Dice score of 75.29% and
an accuracy of 97.09% on the BUSI dataset, and was also noted
for its fast inference time in CPU environments (Cai et al. 2024).
Such efficient and lightweight models are considered significant
steps toward increasing usability in clinical applications. Thus,
this diversity in the literature indicates that Al-based approaches
point to a promising future for breast cancer diagnosis, both in
terms of accuracy and operational efficiency.

MATERIALS AND METHODS

Dataset

In this study, the publicly available "Breast Cancer Detection"
dataset, published by Hayder17 on the Kaggle platform, was uti-
lized for the purpose of detecting breast cancer from mammog-
raphy images (Kaggle 2025). The dataset consists of pathologi-
cally confirmed mammography images divided into two primary
classes: benign lesions (labeled as class 0) and malignant lesions
(labeled as class 1). Containing a total of 3383 images, with 2225 be-
ing benign and 1158 malignant, this rich dataset provides a robust
foundation for evaluating the ability of the developed DL models
to learn the subtle structural and textural differences between these
two critical classes.

To ensure that the model development and evaluation processes
are standardized and reproducible, the dataset, comprising 3383
images, was carefully partitioned into training, validation, and
testing subsets. This split was performed by allocating 70% of
the total dataset (2367 samples) for training, 15% (506 samples)
for validation, and the remaining 15% (510 samples) for testing to
independently evaluate the final performance of the model. These
proportions are intended to ensure the model is trained with suf-
ficient data while also allowing its generalization capability to
be reliably measured without overfitting. Furthermore, care was
taken to ensure that the class distribution in each subset reflected
the proportions of the original dataset. Accordingly, the training
set was composed of 1557 benign (0) and 810 malignant (1) sam-
ples; the validation set contained 333 benign (0) and 173 malignant
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(1) samples; and the test set included 335 benign (0) and 175 ma-
lignant (1) samples. The partitioning of the dataset and the class
distributions are also detailed in Figure 1.

(©

Figure 1 Statistical distribution and partitioning of the "Breast
Cancer Detection" dataset. (a) Number of samples for the Benign
and Malignant classes in the complete dataset. (b) Class
distribution within the training (70%), validation (15%), and
testing (15%) subsets. (c) The proportional split of the dataset into
training, validation, and test sets.

To better visualize the structure of the dataset and the types
of images it contains, representative mammography images for
each class (benign and malignant) are presented in Figure 2. As
illustrated in Figure 2, benign lesions tend to exhibit smooth and
well-defined margins, whereas malignant lesions are more likely
to display features such as irregular, indistinct, or spiculated (star-
like) borders, higher density, and suspicious microcalcification
clusters. In addition to these apparent morphological differences
between the classes, these examples also highlight the challenges
inherent in mammography, such as low contrast, the potential for
dense breast tissue to obscure underlying lesions, and the ambi-
guities created by overlapping tissue layers. These visual repre-
sentations aid in understanding the fundamental morphological
features that our models must learn and differentiate, and they
offer insight into the diversity of the dataset.

Data Augmentation

This study employed a dynamic data augmentation pipeline dur-
ing training to enhance model generalization and mitigate the risk
of overfitting, a common challenge associated with limited med-
ical image datasets. The core strategies of this pipeline, applied
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Benign

Malignant

Figure 2 Representative mammogram images illustrating the
Benign and Malignant classes.

randomly to each image on-the-fly, are as follows: First, through a
"Random Resized Crop" operation, each image was cropped to a
random scale of 8% to 100% of its original area with a variable as-
pect ratio (0.75 to 1.33), and subsequently resized to 224x224 pixels
using a random interpolation method. This was complemented by
a random horizontal flip, applied with a 50% probability. To intro-
duce chromatic variance, "Color Jitter" was utilized to randomly
alter the brightness, contrast, saturation, and hue of the images by
a factor of 0.4. Notably, vertical flipping was deliberately excluded
from the augmentation strategy.

The purpose of this on-the-fly methodology was to present
the model with a diverse and continuously varying stream of
data. This approach is designed to discourage the model from
memorizing specific artifacts of the training set, thereby fostering
a more robust and reliable performance on previously unseen data
Wang et al. (2024); Mumuni et al. (2024).

Model Architectures

In order to tackle the problem of automatically classifying breast
cancer using mammographic images, this research utilized several
important deep CNN architectures. Since there is a common limita-
tion of having little labelled data for the medical domain, we opted
to utilize a transfer learning approach. In particular, we are able to
utilize the excellent feature representations provided by the pre-
trained models from the very large ImageNet database and transfer
that knowledge learned onto the small mammogram classification
task. The primary motive for this was to speed up the conver-
gence of the model, improve generalization and reduce overfitting.
Therefore, in this transfer learning approach, we loaded the initial
weights of each architecture to the pre-trained ImageNet version,
and we then fine-tuned each model on the breast mammography
image dataset.

The first two models we wish to assess are called ResNet50
and DenseNet169, which are both architectures based on differ-
ent philosophies. ResNet50 is a 50-layer network developed by
He et al, and is based on the concept of residual learning. Resid-
ual learning allows ResNet50 to prevent the vanishing gradient
problem with a very deep neural network. In ResNet50, the van-
ishing gradient problem is overcome by the addition of shortcut
connections into its layers, or what they call "residual blocks" and
is considered a solid baseline for classification tasks (He ef al. 2015).
DenseNet169, a 169-layer architecture proposed by Huang et al
is based on dense connectivity. In this design, each layer receives
inputs from all previous layers, making it easier to propagate fea-
tures and reuse features. It is a unique architecture because of the
improvement in parameter efficiency and assumption of improved
gradient flow during training (Huang et al. 2017).

The study included two architectures from the Inception family
of Google for their capacity to capture visual information at multi-
ple scales. InceptionV3 uses "Inception modules" which process
the input from parallel paths of different sizes of convolutional
filters (e.g. 1x1, 3x3, 5x5) and pooling layers. This means that the
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output of these paths can be concatenated, allowing the network
to learn complex invariances at different resolutions, in addition
to optimizations that included the use of factorized convolutions
just to name a few. InceptionV4 builds off from InceptionV3 and
establishes a more consistent and simple modular structure. It can
be thought of as a refinement of the Inception concept, and within
InceptionV4, there are a deeper number of blocks that have been
more optimized with the interest to achieve greater performance
and greater computational efficiency (Szegedy et al. 2016).

The strategic selection of these four distinct CNNs ResNet50,
DenseNet169, InceptionV3, and InceptionV4 was intended to pro-
vide a comprehensive comparison for the task of differentiating
between benign, malignant, and normal tissue in mammograms.
The rationale is that the unique architectural designs and feature-
learning strategies of each model are expected to yield valuable
insights into which approach is most effective for this complex
medical imaging problem. Through a rigorous analysis of their
performance across various evaluation metrics, this study aims
to contribute to the growing body of literature on developing au-
tomated, deep learning-based systems for the early diagnosis of
breast cancer.

Evaluation Metrics

The evaluation of DL models is a fundamental step, indispensable
for quantifying their efficacy, justifying methodological choices,
and enabling informed, data-centric decision-making. Perfor-
mance criteria serve multiple critical functions, including gauging
the effectiveness of classification models, guiding their optimiza-
tion, identifying potential errors or biases within the dataset, facili-
tating comparative analysis between different architectures, and
diagnosing issues like overfitting. In the context of this study on
breast cancer classification, we have adopted a set of standard
evaluation metrics that are well-established and widely accepted
within the scientific literature.

The key metrics used in this project i.e. Accuracy, Precision,
Recall, and the F1-score have significant importance in scientific
fields apart from deep learning. Accuracy is a general measure of
performance based on the number of correctly classified instances
compared to the total instances given. Precision is simply defined
as true positives divided by the number of true positives and false
positives and measures the reliability of the model’s positive pre-
dictions. The higher the precision score, the less the false positives.
Recall, or sensitivity, measures whether the model identified all
actual positive cases, acting as a measure of completeness. The
F1 score is simply the harmonic mean of precision and recall, pro-
viding one single metric that weights the trade-off between false
positives and false negatives. These definitions are also supported
by their mathematical definitions:

Number of correct predictions
Number of total predictions

)

Accuracy =

Precision True Positive o)
1 =
True Positive + False Positive

True Positive
Recall =
eca True Positive + False Negative ®)

Precision x Recall
FF=2X ——— ——— 4
1 % Precision + Recall @)
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RESULTS AND DISCUSSION

In this study, the performance and computational complexity of
four different CNN architectures were comparatively evaluated
for the classification of breast cancer from mammography images.
The obtained results are summarized in Table 1. Upon examination
of the evaluation metrics, it is clearly evident that the DenseNet169
architecture exhibited superior performance compared to all other
models. DenseNet169 achieved the highest score with an accuracy
of 73.33%. This model also attained the most successful results
with 70.45% precision, 67.83% recall, and a 68.60% F1-score. Subse-
quently, although the InceptionV3 and ResNet50 models presented
identical accuracy rates of 72.16%, they exhibited different profiles
in their precision and recall metrics. ResNet50 offered higher pre-
cision (69.39% versus 68.96%), while InceptionV3 showed higher
recall (66.52% versus 65.02%). This suggests that the two mod-
els have different error profiles. Among the tested models, the
InceptionV4 architecture exhibited the lowest performance with
an accuracy of 70.20%. These findings, based solely on classifi-
cation performance, establish DenseNet169 as the most suitable
architecture for this task.

Table 1 Performance and Complexity of CNN Models for
Breast Mammography Image Classification

Model Acc. Prec. Rec. F1 Params (M) GFLOPs
DenseNet 169 73.33 7045 67.83 68.60 12.49 6.72
Inception V3 7216 68.96 66.52 67.22 21.79 5.67
ResNet 50 72.16 69.39 65.02 65.79 23.51 8.26
Inception V4 7020 66.60 65.58 65.96 41.15 12.25

Beyond performance metrics, the complexity and computa-
tional efficiency of the models play a critical role in evaluating
their potential for clinical application. In this context, the most
striking finding is that DenseNet169, which demonstrated the high-
est performance, also possesses the lowest number of parameters
among the tested models, with 12.49 million. This indicates that
the principles of feature reuse and dense connectivity, which form
the foundation of the DenseNet architecture, enable the learning
of richer and more discriminative features with fewer parame-
ters. In stark contrast, InceptionV4, which exhibited the lowest
performance, is the most complex and computationally expensive
model with 41.15 million parameters and 12.24 GFLOPs. This
result strongly suggests that in deep learning, a larger and more
complex model does not always translate to better performance;
in fact, for this specific dataset, it may lead to overfitting or opti-
mization challenges, thereby degrading performance. ResNet50
(23.51M parameters) and InceptionV3 (21.79M parameters) are
positioned at a moderate level in terms of complexity, offering a
balance between performance and efficiency.

Discussing the results from a clinical perspective reveals the
practical value of the models. In medical diagnosis, particularly
for life-threatening conditions like cancer, the balance between
recall and precision metrics is of vital importance. High recall
reduces the likelihood of the model missing malignant cases (false
negatives), while high precision prevents the application of un-
necessary anxiety and invasive procedures, such as biopsies, to a
patient by incorrectly diagnosing a benign case as malignant (false
positives). The fact that DenseNet169 achieved the highest scores
in both recall and precision metrics indicates that it establishes this
critical balance most effectively. Furthermore, its low parameter
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count and reasonable GFLOPs value (6.71) facilitate its deploy-
ment on systems requiring fewer hardware resources and offer
faster inference times, making its integration into the radiologist’s
workflow practical. Consequently, DenseNet169 emerges as the
most promising candidate for development as a decision support
system for breast cancer diagnosis, not only for its superior di-
agnostic accuracy but also for its efficiency and balanced error
profile. To analyze the classification capabilities of the InceptionV3
model, which exhibited the highest performance, in more detail,
its confusion matrix is presented in Figure 3.

Beningn

True Label

Maningnant - 25 150

Beningn Manin‘gnant
Predicted Label

Figure 3 Confusion Matrix of the InceptionV3 Model for Breast
Mammography Image Classification.

CONCLUSION

This study aimed to comparatively evaluate the performance and
efficiency of four widely-used CNN architectures InceptionV3,
DenseNet169, InceptionV4, and ResNet50 for the classification
of breast cancer from mammography images. The results ob-
tained unequivocally established that the DenseNet169 model was
markedly superior to all other architectures in terms of both diag-
nostic accuracy and computational efficiency. DenseNet169 exhib-
ited the highest performance with an accuracy of 73.33%, while
also proving to be the most lightweight model with 12.49 million
parameters. This finding, particularly when contrasted with the
lowest performance exhibited by the most complex model, Incep-
tionV4, reinforces the hypothesis that increased model complexity
does not invariably lead to better outcomes for this specific task.

Consequently, it is concluded that the principles of dense con-
nectivity and feature reuse inherent in the DenseNet architecture
provide a significant advantage in breast cancer classification by en-
abling the learning of more effective features with fewer resources.
While the findings of this study are promising, the limitations of
the utilized dataset must be acknowledged. Future work should
validate the performance of the DenseNet169 model on larger and
more diverse clinical datasets, investigate the impact of different
preprocessing and data augmentation techniques, and integrate
Explainable Artificial Intelligence (XAI) methods to enhance model
interpretability. This research constitutes an important step toward
the development of both high-accuracy and efficient AI models
and highlights the potential for such systems to be integrated into
clinical practice as a reliable decision support tool for radiologists
in the future.
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